

Branching the Electron-Reservoir Complex $[Fe(\eta^5-C_5H_5)(\eta^6-C_6Me_6)][PF_6]$ onto Large Dendrimers: "Click", Amide, and Ionic Bonds

Rodrigue Djeda, Cátia Ornelas, Jaime Ruiz, and Didier Astruc*

Institut des Sciences Moléculaires, UMR CNRS N°5255, Université Bordeaux 1, 33405 Talence Cedex, France

Received April 23, 2010

Several strategies have been used to functionalize 1,3,5-trisubstituted arene-cored dendrimers with the organometallic electron-reservoir moiety $[Fe(\eta^5-C_5H_5)(\eta^6-C_6Me_6)]^+$, **1**, to provide dendritic multielectron reservoirs. They all start from the carboxylic acid $[Fe(\eta^5-C_5H_4COOH)(\eta^6-C_6Me_6)][PF_6]$, **2**, or its acyl chloride derivative $[Fe(\eta^5-C_5H_4COCI)-(\eta^6-C_6Me_6)][PF_6]$, **3**. For this purpose, a series of new polyamine dendrimers from G₀ to G₂ with 1 \rightarrow 3 C connectivity of the branching to the core have been synthesized. Amide, "click" and ionic ammonium carboxylate linkage successfully provided G₀, G₁, and G₂ metallodendrimers up to G₇ with approximately 14 000 organoiron termini was only possible by combining amide, "click", and tether lengthening strategies to avoid steric bulk at the dendrimer periphery. Reduction of the 18-electron Fe^{II} metallodendrimers, exemplified by a G₄-DAB-64-Fe^{II} complex, was achieved exergonically using the parent electron-reservoir complex [Fe(η^5 -C₅H₅)(η^6 -C₆Me₆)], **1a**, at -30 °C in MeCN, which allowed further reduction of 64 equiv of C₆₀ to C₆₀^{•-} using the 19-electron Fe^{II} metallodendrimer.

Introduction

Transition-metal sandwich complexes, the prototype of which is ferrocene, are well-known for their ability to contain flexible numbers of valence electrons on the metal center, unlike the other families of organometallic complexes.^{1,2} This property is particularly marked for the late first-row transition-metal sandwich complexes because of the stereoelectronic properties of the delocalized π -cyclic ring ligands.^{1,2} As a result, these complexes have rich redox properties that find applications as stoichiometric redox reagents,³ redox catalysts,⁴ electron-transfer-chain catalysts,⁵ redox sensors,⁶ electrochemical references,⁷ and anticancer drugs.⁸ The various redox potentials of these compounds span over the entire

redox scale,^{2,3} but some of them stand at very negative or very positive potentials. The reduced form of the former category serve as electron-reservoir systems (strong reductants), whereas the oxidized form of the later category serve as reservoirs of electron holes (strong oxidants).² The mixed-sandwich complexes [Fe(η^5 -C₅H₅)(η^6 -C₆Me₆)]^{*n*+}, (**1** for *n* = 1, **1a** for *n* = 0), have the property to serve as either electron reservoirs of electron holes for *n* = 2/1.¹⁰ Indeed, the family of 18-electron complexes [Fe(η^5 -C₅H₅)(η^6 -arene)]⁺ is very large because of the reactivity of the coordinated arene that is activated by the cationic 12-electron group CpFe⁺.¹¹ A key

^{*}To whom correspondence should be addressed. E-mail: d.astruc@ ism.u-bordeaux1.fr.

^{(1) (}a) Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. **1976**, *98*, 1729–1742. (b) Lauher, J. W.; Elian, M.; Summerville, R. H.; Hoffmann, R. J. Am. Chem. Soc. **1976**, *98*, 3219–3224.

 ^{(2) (}a) Astruc, D. Organometallic Chemistry and Catalysis; Springer:
 Berlin, 2007. Chap. 7–11. (b) Astruc, D. New J. Chem. 2009, 33, 1191–1206.
 (3) (a) Connelly, N. G.; Geiger, W. E. Adv. Organomet. Chem. 1984, 23, 1–

 ⁽a) Connelly, N. G.; Geiger, W. E. *Chem. Rev.* **1996**, *96*, 877–910. (c) Geiger,
 (b) Connelly, N. G.; Geiger, W. E. *Chem. Rev.* **1996**, *96*, 877–910. (c) Geiger,
 W. E. *Organometallics* **2007**, *26*, 5738-5765 (a historical and perspective account).

^{(4) (}a) Astruc, D.; Hamon, J.-R.; Althoff, G.; Román, E.; Batail, P.; Michaud, P.; Mariot, J.-P.; Varret, F.; Cozak, D. J. Am. Chem. Soc. 1979, 101, 5445–5447. (b) Astruc, D. Electron Transfer and Radical Processes in Transition Metal Chemistry; VCH: New York, 1995, Chapter 6. (c) Casado, C. M.; Cuadrado, I.; Morán, M.; Alonso, B.; Barranco, M.; Losada, J. Appl. Organomet. Chem. 1999, 13, 245–259.

^{(5) (}a) Kochi, J. K. J. Organomet. Chem. **1986**, 300, 139–166. (b) Astruc, D. Angew. Chem., Int. Ed. Engl. **1988**, 27, 643–660.

^{(6) (}a) Saji, T.; Kinoshita, I. J. Chem. Soc., Chem. Commun. 1986, 716–717. (b) Beer, P. D. Chem. Commun. 1996, 689–696. (c) Valério, C.; Fillaut, J.-L.; Ruiz, J.; Guittard, J.; Blais, J.-C.; Astruc, D. J. Am. Chem. Soc. 1997, 119, 2588–2589. (d) Beer, P. D. Acc. Chem. Res. 1998, 31, 71–80. (e) Gonzáles, B.; Casado, C. M.; Alonso, B.; Cuadrado, I.; Moran, M.; Wang, Y.; Kaifer, A. E. Chem. Commun. 1998, 2569–2570. (f) Reyes, O.; Moutet, J. C.; Pecaut, J.; Royal, G.; Saint-Aman, E. New J. Chem. J. 2002, 26, 9–12. (g) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486–516. (h) Daniel, M.-C.; Ruiz, J.; Blais, J.-C.; Daro, N.; Astruc, D. Chem—Eur. J. 2003, 9, 4371–4379. (i) Astruc, D.; Blais, J.-C.; Daniel, M.-C.; Gatard, S.; Nlate, S.; Ruiz, J. C. R. Chim. 2003, 6, 1117–1127. (j) Astruc, D.; Daniel, M.-C.; Ruiz, J. Chem. Commun. 2004, 2637–2649. (k) Daniel, M.-C.; Astruc, D. Chem. Rev. 2004, 104, 293–346. (l) Astruc, D.; Daniel, M.-C.; Ruiz, J. Top. Organomet. Chem. 2006, 20, 121–148. (m) Ornelas, C.; Aranzaes, J. R.; Cloutet, E.; Alves, S.; Astruc, D. Angew. Chem., Int. Ed. 2007, 46, 872–877.

^{(7) (}a) Bashkin, J. K.; Kinlen, P. J. *Inorg. Chem.* **1990**, *29*, 4507. (b) Ruiz, J.; Astruc, D. C. R. Acad. Sci. Paris, t. 1, Sér. II c **1998**, 21–27. (c) Noviandri, I.; Brown, K. N.; Fleming, D. S.; Gulyas, P. T.; Lay, P. A.; Masters, A. F.; Philips, L. J. Phys. Chem. B **1999**, *103*, 6713–6722. (d) Ruiz, J.; Daniel, M.-C.; Astruc, D. Can. J. Chem. **2006**, *84*, 288–299.

property of this series of complexes was found in the electronreservoir properties of the 19-electron neutral Fe^I complexes [Fe(η^{5} -C₅H₅)(η^{6} -arene)] that are only useful if the arene ligand is peralkylated, in particular with hexamethylbenzene.¹² A carboxylic acid derivative of [Fe(η^{5} -C₅H₅)(η^{6} -C₆Me₆)] could be obtained upon carrying out ligand exchange of the unsubstituted cyclopentadienyl ring of ferrocenecarboxylic acid by hexamethylbenzene in the presence of CO₂ and aluminum chloride. The resulting complex [Fe(η^{5} -C₅H₄-COOH)(η^{6} -C₆Me₆)][PF₆], **2**, allowed further functionalization of the stable electron-reservoir complexes through reaction of its acyl chloride derivative [Fe(η^{5} -C₅H₄COCI)(η^{6} -C₆Me₆)][PF₆], **3** with amines, alcohols, and thiols.¹³

^{(8) (}a) Osella, D.; Ferrali, M.; Zanello, P.; Laschi, F.; Fontani, M.; Nervi, C.; Cavigiolio, G. *Inorg. Chim. Acta* 2000, *306*, 42–48. (b) van Staveren, D. R.; Metzler-Nolte, N. *Chem. Rev.* 2004, *104*, 5931–5985. (c) Hillard, E.; Vessières, A.; Thouin, L.; Jaouen, G.; Amatore, C. *Angew. Chem., Int. Ed.* 2006, *45*, 285–290. (d) Hamels, D.; Dansette, P. M.; Hillard, E. A.; Top, S.; Vessières, A.; Herson, P.; Jaouen, G.; Mansuy, D. *Angew. Chem., Int. Ed.* 2009, *48*, 9124–9126. (e) Tan, Y. L. K.; Pigeon, P.; Hillard, E. A.; Top, S.; Plamont, M.-A.; Vessières, A.; McGlinchey, M. J.; Muller-Bunz, H.; Jaouen, G. *Dalton Trans.* 2009, 10871–10881.

(9) (a) Astruc, D. Acc. Chem. Res. 1986, 19, 377–383. (b) Astruc, D. Chem. Rev.
1988, 88, 1189–1216. (c) Astruc, D. Bull. Soc. Chem. Jpn. 2007, 80, 1658–1671.
(10) (a) Ruiz, J.; Ogliaro, F.; Saillard, J.-Y.; Halet, J.-F.; Varret, F.;

(10) (a) Ruiz, J.; Ognaro, F.; Sanlard, J.-Y.; Halet, J.-F.; Varret, F.;
 Astruc, D. J. Am. Chem. Soc. 1998, 120, 11693–11705. (b) Trujillo, H. A.;
 Casado, C.; Ruiz, J.; Astruc, D. J. Am. Chem. Soc. 1999, 121, 5674–5686.
 (11) (a) Astruc, D. Tetrahedron 1983, 39, 4027–4095. (b) Kane-Maguire,

(11) (a) Astruc, D. *Tetrahedron* 1983, *39*, 4027–4095. (b) Kane-Maguire,
L. A. P.; Honig, E. D.; Sweigart, D. A. *Chem. Rev.* 1984, *84*, 525–543. (c) Balas,
L.; Jhurry, D.; Latxague, L.; Grelier, S.; Morel, Y.; Hamdani, M.; Ardoin, N.;
Astruc, D. *Bull. Soc. Chim. Fr.* 1990, *127*, 401–426. (d) Abd-El-Aziz, A. S.;
Bernardin, S. *Coord. Chem. Rev.* 2000, *203*, 219–267. (e) Abd-El-Aziz, A. S.;
Shipman, P. O.; Boden, B. N.; McNeil, W. C. *Prog. Polym. Sci.* 2010, *35*, 714–
836. (f) Astruc, D.; Ruiz, J. *Tetrahedron* 2010, *66*, 1769–1785.
(12) (a) Hamon, J.-R.; Astruc, D.; Michaud, P. J. Am. Chem. Soc. 1981,

(12) (a) Hamon, J.-R.; Astruc, D.; Michaud, P. J. Am. Chem. Soc. 1981, 103, 758–766. (b) Green, J. C.; Kelly, M. R.; Payne, M. P.; Seddon, E. A.; Astruc, D.; Hamon, J.-R.; Michaud, P. Organometallics 1983, 2, 211–218. (c) Lacoste, M.; Varret, F.; Toupet, L.; Astruc, D. J. Am. Chem. Soc. 1987, 109, 6504–6506. (d) Desbois, M.-H.; Astruc, D.; Guillin, J.; Varret, F.; Trautwein, A. X.; Villeneuve, G. J. Am. Chem. Soc. 1989, 111, 5800–5809.

(13) (a) Román, E.; Dabard, R.; Moinet, C.; Astruc, D. *Tetrahedron Lett.* **1979**, 20, 1433–1436. (b) Guerchais, V.; Román, E.; Astruc, D. *Organometallics* **1986**, *5*, 2505–2511. (c) Kahlal, S.; Ornelas, C.; Ruiz, J.; Astruc, D.; Saillard, J.-Y. *Organometallics* **2008**, *27*(15), 3603–3700.

(14) (a) Newkome, G. R.; Moorefield, C. N.; Vögtle, F. Dendrons and Dendrimers. Concepts, Synthesis and Applications; Wiley-VCH: Weinheim, 2001. (b) Dendrimers and other Dendritic Polymers; Tomalia, D., Fréchet, J. M. J., Eds.; Wiley-VCH: New York, 2002. (c) Dendrimers and Nanosciences; Astruc, D., Ed.; Elsevier: Paris, C. R. Chim., 2003, 6, 709-1208. (d) Astruc, D.; Boisselier, E.; Ornelas, C. Chem. Rev. 2010, 110, 1857-1959. (e) Reviews on metallodendrimers: Newkome, G. R.; He, E.; Moorefield, C. N. Chem. Rev. 1999, 99, 1689-1746. (f) Hwang, S. H.; Shreiner, C. D.; Moorefield, C. N.; Newkome, G. R. New J. Chem. 2007, 31, 1192-1217. (g) Oosterom, G. E.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 2001, 40, 1828-1849. (h) Astruc, D.; Chardac, F. Chem. Rev. 2001, 101, 2991-3024. (i) Kreiter, R.; Kleij, A. W.; Klein Gebbink, R. J. M.; van Koten, G. Dendrimers IV: Metal Coordination, Self Assembly, Catalysis. In Topics in Current Chemistry; Vögtle, F., Schalley, C. A., Eds.; Springer-Verlag: Berlin, 2001; Vol. 217, p 163. (j) van Heerbeeck, R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. Rev. 2002, 102, 3717-3756. (k) Heuzé, K.; Méry, D.; Gauss, D.; Blais, J.-C.; Astruc, D. Chem.-Eur. J. 2004, 10, 3936-3944. (1) Liang, C.; Fréchet, J. M. J. Prog. Polym. Sci. 2005, 30, 385. (m) Scott, R. W. J.; Wilson, O. M.; Crooks, R. M. J. Phys. Chem. B. 2005, 109, 692. (n) Méry, D.; Astruc, D. Coord. Chem. Rev. 2006, 250, 1965-1979. (o) Moorefield, C. N.; Newkome, G. R. New J. Chem. 2007, 31, 1192-1217. (p) de Jesús, E.; Flores, J. C. Ind. Eng. Chem. Res. 2008, 47, 7968-7981.

Metallodendrimers have a very rich chemistry that has been largely reviewed.^{14,15} Our group have been interested in studying the redox properties of different types of metallodendrimers, including giant ferrocenyl¹⁶ and cobaltocenyl¹⁷ dendrimers. However, our efforts to attach the $[Fe(\eta^5-C_5H_5)(\eta^6-C_6Me_6)][PF_6]$ complex to the periphery of dendrimers have been marred by insolubility problems, as shown in a previous communication.¹⁸ Branching of iron-sandwich complexes in which the arene ligand was not fully permethylated was also reported to be easier, but without hope to form stable Fe^I complexes.¹⁹ The inclusion of $[Fe(\eta^5-C_5H_5)-(\eta^6-C_6Me_6)]^+$ into dendrimers was a high synthetic challenge because of the combination of the positive charge and large bulk and rigidity of the arene in the mixed-sandwich complex.

We now report several synthetic strategies used to attach $[Fe(\eta^5-C_5H_4R)(\eta^6-C_6Me_6)]^+$ moieties onto periphery of the dendrimers. New amino-terminated dendrimers were synthesized and used to provide amide links and ionic bonding, upon reactions with the organometallic acyl chloride **3** and carboxylic acid **2** respectively with up to 81 termini. Tether lengthening of polyallyl dendrimers to form long-arm azido-terminated dendrimers allowed the synthesis of giant metallodendrimers by "click" chemistry with propargylated organoiron groups. Only the later bond-lengthening route allows avoiding the bulk problems for these metallodendrimer syntheses above the second generation (G₂), up to G₇ with a theoretical number of 19683 termini.

Results and Discussion

1. Synthesis of the Dendrimer Series. Our synthetic strategy to build our series of dendrimers follows the 1-3 C connectivity.²⁰ The dendritic construction starts with the known nona-allylation of $[Fe(\eta^5-C_5H_5)(\eta^6-mesitylene)][PF_6]$, followed by visible-light photolysis to remove the metal moiety,^{21a,b} quantitatively yielding the nona-allyl dendritic core G₀-9-allyl, 4.^{21c-e} Hydrosilylation of the terminal olefinic bonds of G₀-9-allyl, using HSi-(CH₃)₂CH₂Cl and the Karstedt catalyst, regioselectively gives the nona-chloromethyl(dimethyl)silyl derivative, 5. Williamson reaction between 5 and the phenoltriallyl

(17) (a) Ornelas, C.; Ruiz, J.; Astruc, D. Organometallics **2009**, *28*, 2716–2723, (b) Astruc, D.; Ornelas, C.; Ruiz, J. Chem. Eur. J. **2009**, *15*, 8936–8944, 2020

(18) Ruiz, J.; Pradet, C.; Varret, F.; Astruc, D. Chem. Commun. 2002,
 (10) Alapas, F.; Valázia, C.; Puiz, I.; Astrua, D. Naw, J. Chem. 1907, 21

(19) Alonso, E.; Valério, C.; Ruiz, J.; Astruc, D. New J. Chem. 1997, 21, 1139–1141.

(20) (a) Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K. J. Org. Chem. 1985, 50, 2003–2004. (b) Newkome, G. R. Pure Appl. Chem. 1998, 70, 2337–2343. (c) Narayanan, V. V.; Newkome, G. R. Top. Curr. Chem. 1998, 197, 19–33. (d) Newkome, G. R.; Schreiner, C. Chem. Rev. 2010, 110, in press. (21) (a) Catheline, D.; Astruc, D. J. Organomet. Chem. 1983, 248, C9–

(21) (a) Catheline, D.; Astruc, D. J. Organomet. Chem. 1983, 248, C9–C12. (b) Catheline, D.; Astruc, D. J. Organomet. Chem. 1984, 272, 417–426. (c) Moulines, F.; Astruc, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1347–1349. (d) Moulines, F.; Gloaguen, B.; Astruc, D. Angew. Chem., Int. Ed. Engl. 1992, 28, 458–460. (e) Moulines, F.; Djakovitch, L.; Boese, R.; Gloaguen, B.; Thiel, W.; Fillaut, J.-L; Delville, M.-H.; Astruc, D. Angew. Chem., Int. Ed. Engl. 1993, 32, 1075–1077.

^{(15) (}a) Casado, C. M.; Cuadrado, I.; Moran, M.; Alonso, B.; Garcia, B.; Gonzales, B.; Losada, J. *Coord. Chem. Rev.* **1999**, *185–186*, 53–79. (b) Astruc, D.; Ornelas, C.; Ruiz, J. *J. Inorg. Organomet. Polym. Mater.* **2008**, *18*, 4–17. (c) Astruc, D.; Ornelas, C.; Ruiz, J. *Acc. Chem. Res.* **2008**, *41*, 841–856.

^{(16) (}a) Ornelas, C.; Ruiz, J.; Belin, C.; Astruc, D. J. Am. Chem. Soc. 2009, 131, 590–601. (b) Ornelas, C.; Ruiz, J.; Astruc, D. Organometallics 2009, 28, 4431–4437.

Scheme 1. Synthesis of the Nona-Allyl Core 4, Phenoltriallyl Dendron 6, and G₁-27-allyl 7

Scheme 2. Construction of the Series of Allyl Dendrimers^a

^{*a*} The syntheses of the G_n -3^{*n*+2}-allyl (n = 0-7) dendrimers follows the iteration reactions shown in Scheme 1: hydrosilylation reaction and Williamson reaction using the phenoltriallyl dendron.²³.

dendron 6,²² afforded the first-generation (G_1) dendrimer containing 27 allyl termini, 7 (Scheme 1).²³

Repetition of the sequence of reactions (iteration) involving hydrosilylation of the allyl dendrimers followed by coupling with the phenoltriallyl dendron **6**, until G_9 , afforded the series of giant pentane-soluble allyl-terminated dendrimers (Scheme 2).²³

2. Functionalization of the Organic Dendrimers with the Organoiron Cation $[Fe(\eta^5-C_5H_5)(\eta^6-C_6Me_6)]^+$. 2.1. New Dendritic Amines and Branching the Organoiron Cation with Amide and Ionic Linkage, up to 81 Termini. 2.1.1. Synthesis of New Polyamine Dendrimers. Amine-terminated dendrimers were synthesized from the chloromethyl-terminated dendrimers in two steps: (i) nucleophilic substitution of the terminal chloride by azide using NaN₃, affording the polyazide dendrimers;²⁴ (ii) reduction of the azide termini using either PPh₃/H₂O or LiAlH₄. Both reductants give quantitative yields, but the use of LiAlH₄ is preferred to avoid the difficult separation of the amine dendrimers from PPh₃ and $O = PPh_3$ (this later species resulting from reduction of the azide groups with PPh_3/H_2O). This synthesis was carried out for $G_n \cdot 3^{n+2} \cdot NH_2$ (n = 0-2), providing polyamine dendrimers that contain respectively 9 (G₀-9-NH₂, 14), 27

 $(G_1-27-NH_2, 15)$, and 81 $(G_2-81-NH_2, 16)$ terminal primary amine groups (Chart 1). The nona-amine 14 is soluble in water, unlike 15 and 16, and the three polyamine dendrimers are soluble in ether, dichloromethane, and chloroform.

Polyamine dendrimers have important applications as largely known with poly(amidoamine) (PAMAM), poly-(propylene imine) (PPI), and melanine dendrimers.^{14a-d,25}

2.1.2. Attachment of the Complex [Fe(η^5 -C₅H₄CO₂H)- $(\eta^{6}-C_{6}Me_{6})$ [[PF₆] to Amine Dendrimers through Covalent Amide Linkages. It was found that the reaction between the acid derivative 2 and amine groups gave optimal yields when the acyl chloride derivative 3 ([Fe(η^5 -C₅H₄- $COCl)(\eta^{6}-C_{6}Me_{6})$ [PF₆]) was freshly prepared by refluxing 2 overnight in thionyl chloride, and then added to a dichloromethane solution of the amine compound in presence of triethylamine.^{13,18} Reactions of propylamine (17) and the polyamine dendrimers 14 and 15 with the acyl chloride 3 yielded the monomeric compound [Fe(η^{5} - $C_5H_4CONHPr$)(η° - C_6Me_6)][PF₆], **18** and the dendritic complexes G_0 -9-[Fe(η^5 -C₅H₄CONH-dendr)(η^6 -C₆Me₆)]-[PF₆], **19**, and G₁-27-[Fe(η^{5} -C₅H₄CONH-dendr)(η^{6} - C_6Me_6][PF₆], **20** as orange powders (eq 1 and Chart 2). The dendritic complexes are soluble in dichloromethane, acetonitrile, and dimethylformamide, but not in ether nor water.

^{(22) (}a) Sartor, V.; Djakovitch, L.; Fillaut, J.-L.; Moulines, F.; Neveu, F.; Marvaud, V.; Guittard, J.; Blais, J.-C.; Astruc, D. *J. Am. Chem. Soc.* **1999**, *121*, 2929–2930. (b) Nlate, S.; Ruiz, J.; Blais, J.-C.; Astruc, D. *Chem. Commun.* **2000**, 417–418. Nlate, S.; Ruiz, J.; Sartor, V.; Navarro, R.; Blais, J.-C.; Astruc, D. *Chem.—Eur. J.* **2000**, *6*, 2544–2553.

 ⁽²³⁾ Ruiz, J.; Lafuente, G.; Marcen, S.; Ornelas, C.; Lazare, S.; Cloutet,
 E.; Blais, J.-C.; Astruc, D. J. Am. Chem. Soc. 2003, 125, 7250–7257.

⁽²⁴⁾ Ornelas, C.; Aranzaes, J. R.; Salmon, L.; Astruc, D. Chem. - Eur. J. 2008, 14, 50-64.

^{(25) (}a) Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. *Polym. J.* **1985**, *17*, 117–132. (b) de Brabander-van den Berg, E. M. M.; Meijer, E. W. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 1308–1312. (c) Chen, H. T.; Neerman, M. F.; Parrish, A. R.; Simanek, E. E. J. Am. Chem. Soc. **2004**, *126*, 10044–10048.

Chart 1. Three Generations G_0-G_2 of Amine-Terminated Dendrimers

For comparison, we also carried out the reaction between the commercially available diaminobutane (DAB) dendrimer G₄-DAB-64-NH₂, **21**, and **3** in MeCN/CH₂Cl₂ (2:1) in the presence of triethylamine, yielding the dendritic complex G₄-DAB-64- $[(\eta^5-C_5H_4CONH-dendr)(\eta^6-C_6Me_6)][PF_6]$, **22**, as an orange powder with similar solubility properties.

2.1.3. Ionic Binding between the Polyammonium Dendrimers and Two Organoiron Carboxylates [Fe(η^5 -C₅H₄-CO₂H)(η^6 -C₆Me₆)][PF₆] and [Fe(η^5 -C₅H₄CO₂H)(η^5 -C₅H₅)]. The formation of dendritic ammonium carboxylates from dendritic amines and carboxylic acid is precedented.^{14a-d,26} This property was used to bind complex 2 to the amine dendrimers through ionic bonds (eq 2). Propylamine 17 and the polyamine dendrimers 14, 15, and 16 were mixed with [Fe(η^5 -C₅H₄CO₂H)(η^6 -C₆Me₆)][PF₆], 2, in MeCN at room temperature under inert atmosphere, affording respectively the monomeric salt 23 and the dendritic polyammonium carboxylates 24, 25, and 26 (Chart 3) as orange powders that were characterized by ¹H and ¹³C NMR, IR, and elemental analysis.

$$R'NH_2 + R''CO_2H \rightarrow R''CO_2^{-} - - + NH_3R' \quad (2)$$

For comparison, the ionic binding of the neutral iron complex ferrocenecarboxylic acid, **27**, to propylamine

and polyamine dendrimers has also been studied. Ferrocenecarboxylic acid **27** was mixed with propylamine stoichiometrically in tetrahydrofuran (THF), which allowed precipitation of an orange solid, **28**. The same reaction was carried out with the three dendritic amines G_0 -9-NH₂, G_1 -27-NH₂, and G_2 -81-NH₂ also resulting in the formation of the polyammonium carboxylates **29**, **30**, and **31** as orange powders (Chart 3). These compounds were soluble only in acetone and slightly so in methanol. They were characterized by IR (in KBr) and ¹H NMR spectroscopy (rapidly recorded spectra in CD₃COCD₃).

Table 1 shows the comparative NMR and IR data for the carboxylic acid **2**, the carboxylate sodium salt [Fe(η^{5} -C₅H₄CO₂⁻Na⁺)(η^{6} -C₆Me₆)][PF₆], **2a**, the carboxylate propylammonium salt [Fe(η^{5} -C₅H₄CO₂⁻PrNH₃⁺)(η^{6} -C₆Me₆)][PF₆], **23**, and the dendritic ammonium salts [Fe(η^{5} -C₅H₄CO₂⁻dendrNH₃⁺)(η^{6} -C₆Me₆)][PF₆], **24–26**.

The IR carbonyl bands of the acid complex 2 at 1702 and 1618 cm⁻¹ are shifted to 1630 and 1580 cm⁻¹ for the sodium carboxylate salt 2a; likewise they are found at 1634 and 1591 cm^{-1} for the propylammonium as well as for the dendritic ammonium salts, suggesting the expected protonation of the primary amino group by the carboxylic acid. In ¹H NMR, the proton signals of the substituted cyclopentadienyl ligand of acid 2 are found at 4.97 ppm for the β proton and at 4.79 ppm for the γ proton, and these signals are shifted to 4.73 ppm and 4.45 ppm, respectively, for the sodium carboxylate salt. The corresponding proton signals on the propyl- and dendritic ammonium salts are found at 4.73-4.77 ppm and 4.55-4.58 ppm, that is, intermediate between those of the acid 2 and those of the sodium carboxylate 2a, probably because of hydrogen bonding between the primary ammonium and the carboxylate group. The ¹H signal of the methylene group that is bound to the amino group is found at 2.60 ppm for propylamine and 2.14 ppm for the dendrimers, and it is shifted downfield to 2.98 ppm for the propylammonium and to 2.40 ppm for the polyammonium

 ^{(26) (}a) Ornelas, C.; Boisselier, E.; Martinez, V.; Pianet, I.; Aranzaes,
 J. R.; Astruc, D. *Chem. Commun.* 2007, 5093–5095. (b) Boisselier, E.; Ornelas,
 C.; Pianet, I.; Aranzaes, J. R.; Astruc, D. *Chem.—Eur. J.* 2008, 14, 5577–5587.

Chart 2. Metallodendrimers Synthesized through Amide Linkages According to Equation 1

dendrimers. All these IR and NMR data are in agreement with the dendritic ammonium carboxylate formulation.

Table 2 shows the ¹H NMR and IR data for the ferrocenecarboxylic acid **27**, the carboxylate propylammonium salt [Fe(η^5 -C₅H₄CO₂⁻PrNH₃⁺)(η^5 -C₅H₅)], **28**, and the dendritic ammonium salts [Fe(η^5 -C₅H₄CO₂⁻dendrNH₃⁺)(η^5 -C₅H₅)], **29**–**31**, recorded in (CD₃)₂CO. Table 3 shows the ¹H, ¹³C NMR and IR data for the sodium ferrocenecarboxylate salt **27a** and the carboxylate propylammonium salt [Fe(η^5 -C₅H₄CO₂⁻PrNH₃⁺)(η^5 -C₅H₅)], **28**, recorded in D₂O.

The IR carbonyl band of ferrocenecarboxylic acid, 27, at 1657 cm⁻¹ is shifted to 1533 cm⁻¹ in the carboxylate sodium salt, **27a**, 1518 cm⁻¹ for the propylammonium salt, **28**, and 1545 to 1548 cm⁻¹ for the dendritic polyammonium ferrocenenecarboxylate salts 29-31. Similarly to the ionic binding of iron complex 2, the ionic binding of ferrocenecarboxylic acid with the polyamine dendrimers shows an upfield shift on the ¹H NMR signals of the cyclopentadienyl protons adjacent to the acid group from 4.80 ppm to 4.73 ppm (Table 2). ¹³C NMR spectra of the ionic dendritic ferrocenyl derivatives could not be carried out satisfactorily because acetone slowly reacts with them during the time necessary for recording the ¹³C NMR spectra, and the solubility in CD₃OD is not sufficient. ¹³C NMR spectra could be recorded in D₂O for the sodium and propylammonium carboxylate salts 27a respectively 28. The data gathered in Tables 2 and 3 strongly suggests the formation of the ferrocenylcarboxylate salts of propylammonium 28 and dendritic polyammonium 29-31.

2.2. Attachment of the Complex $[Fe(\eta^5-C_5H_4R)(\eta^6-C_6Me_6)][PF_6]$ to Giant Dendrimers up to 14 000 Termini: Tether Lengthening and "Click" Reaction. Several attempts to attach complex 1 to giant dendrimers through amide coupling reaction have failed, mainly because of the quick insolubilization of the high generation amineterminated dendrimers, with or without long tethers.

The concept of "click chemistry" was introduced by Sharpless and co-workers in 2001²⁷ and among the "click" reactions, the Cu(I)-catalyzed alkyne azide 1,3dipolar cycloaddition (CuAAC) is the most popular.²⁸ CuAAC was successfully applied in different areas of materials chemistry,²⁹ including dendrimers.³⁰ In dendrimer chemistry, CuAAC was used for the convergent^{30a} and divergent^{6k} syntheses as well as in their functionalization.^{24,30b-30d} The continuous success of this reaction inspired us in the development of a new synthetic strategy to attach the iron complex 1 to giant dendrimers that include: (i) lengthening of the allyl dendrimers tethers using a silane with a long chain and a bromo termini, followed by substitution of the bromide termini by azide groups; (ii) functionalization of complex 1 with alkyne termini; and (iii) CuAAC reaction between the giant-long azide dendrimers with the alkyne iron complexes.

2.2.1. Synthesis of New Polyazido Dendrimers with Lengthened Tethers. A silane compound with a long chain and a bromo termini, 11-bromoundecyl(dimethyl)silane, **32**, was synthesized by hydrosilylation of bromo-1-undecene with (dimethyl)chlorosilane followed by LiAlH₄ reduction (scheme 3).

The tethers of the polyallyl dendrimers 4, 7, 10, and 13 (G₀, G₁, G₄, and G₇) with 9, 27, 729, and 19683 termini

⁽²⁷⁾ Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–2021.

⁽²⁸⁾ Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952-3015.

^{(29) (}a) Meldal, M. *Macromol. Rapid Commun.* **2008**, *29*, 1016–1051. (b) Boisselier, E.; Diallo, A. K.; Salmon, L.; Ruiz, J.; Astruc, D. *Chem. Commun.* **2008**, 4819–4821. (c) Durot, S.; Mobian, P.; Collin, J. P.; Sauvage, J. P. *Tetrahedron* **2008**, *64*, 8496–8503. (d) Megiatto, J. D.; Schuster, D. I. *J. Am. Chem. Soc.* **2008**, *130*, 12872–12873.

^{(30) (}a) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.;
Voit, B.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew.
Chem., Int. Ed. 2004, 43, 3928–3932. (b) Joralemon, M. J.; O'Reilly, R. K.;
Matson, J. B.; Nugent, A. K.; Hawker, C. J.; Wooley, K. L. Macromolecules
2005, 38, 5436–5443. (c) Srinivasachari, S.; Fichter, K. M.; Reineke, T. M. J. Am.
Chem. Soc. 2008, 130, 4618–4627. (d) For a review on "click" dendrimers: Franc,
G.; Kakkar, A. Chem. Commun. 2008, 5267–5276.

Chart 3. Polyammonium Carboxylates Generated by Mixing the Carboxylic Acid Complexes 2 and 27 with the Polyamine Dendrimers

respectively, were lengthened by hydrosilylation reaction with the silane **32**. The bromo group of the bromoalkyl-

terminated dendrimers was subsequently substituted by an azido group upon nucleophilic substitution using

Table 1. ¹H, ¹³C NMR, and IR Data of the Complexes Obtained by Mixing $[Fe(\eta^5-C_5H_4CO_2H)(\eta^6-C_6Me_6)][PF_6]$, **2**, with Propylamine **17** and the Amino-Terminated Dendrimers **14–16**, in CDCN

compound	${}^{I}H_{\beta}/{}^{I3}C_{\beta}\delta(\text{ppm})$	${}^{I}H_{\gamma}/{}^{I3}C_{\gamma}\delta(\mathrm{ppm})$	$^{1}\text{H}/^{13}\text{C}(\text{C}H_{2}\text{NH}_{3}^{+}) \delta(\text{ppm})$	IR- CO(cm ⁻¹) KBr
$[Fe(\eta^5-C_5H_4CO_2H)(\eta^6-C_6Me_6)][PF_6], 2$	4.97/80.7	4.79/78.2		1702; 1618
$[Fe(\eta^5-C_5H_4CO_2^-Na^+)(\eta^6-C_6Me_6)][PF_6], 2a$	4.73/79.1	4.45/78.4		1630; 1580
Pr-NH ₂ , 17	1	,	2.60/43.9	
$[Fe(\eta^5 - C_5H_4CO_2 - PrNH_3^+)(\eta^6 - C_6Me_6)][PF_6], 23$	4.73/79.3	4.55/78.3	2.98/	1634; 1591
G ₀ -9-NH ₂ , 14	1	,	2.14/29.9	
$G_0-9-[Fe(\eta^5-C_5H_4CO_2^-dendrNH_3^+)(\eta^6-C_6Me_6)][PF_6], 24$	4.73/79.5	4.58/78.2	2.40/27.1	1634; 1591
G ₁ -27-NH ₂ , 15	1	,	2.14/30.6	
$G_1-27-[Fe(\eta^5-C_5H_4CO_2^-dendrNH_3^+)(\eta^6-C_6Me_6)][PF_6], 25$	4.76/79.6	4.58/78.2	2.40/27.0	1634; 1591
G ₂ -81-NH ₂ , 16	,	,	2.14/30.0	
G_2^{-81} -[Fe(η^5 -C ₅ H ₄ CO ₂ ⁻ dendrNH ₃ ⁺)(η^6 -C ₆ Me ₆)][PF ₆], 26	4.77/79.8	4.58/78.2	2.40/27.0	1634; 1591

Table 2. ¹H NMR and IR Data of the Complexes Obtained by Mixing [Fe(η^5 -C₃H₄CO₂H)(η^5 -C₅H₅)], **27**, with Propylamine **17** and Amino-Terminated Dendrimers **14–16**, in (CD₃)₂CO

compound	${}^{I}H_{\beta}\delta(\text{ppm})$	${}^{I}H_{\gamma} \delta(\text{ppm})$	${}^{1}\mathrm{H}(\mathrm{C}H_{2}\mathrm{NH_{3}}^{+})\delta(\mathrm{ppm})$	IR- CO(cm ⁻¹) KBr
$[Fe(\eta^{5}-C_{5}H_{4}CO_{2}H)Cp], 27$	4.80	4.50		1657
Pr-NH ₂ , 17			2.64	
$[Fe(\eta^5 - C_5 H_4 CO_2 - Pr NH_3^+)Cp], 28$	4.72	4.40	3.13	1518
G ₀ -9-NH ₂ , 14			2.14	
$G_0-9-[Fe(\eta^5-C_5H_4CO_2^-)dendrNH_3^+)Cp], 29$	4.73	4.36	2.04	1545
G ₁ -27-NH ₂ , 15			2.14	
$G_1-27-[Fe(\eta^5-C_5H_4CO_2^-dendrNH_3^+)Cp], 30$	4.73	4.34	2.04	1548
G ₂ -81-NH ₂ , 16			2.14	
$G_2^{-81-}[Fe(\eta^5-C_5H_4CO_2^{-}dendrNH_3^{+})Cp], 31$	4.73	4.39	3.04	1548

Table 3. ¹H, ¹³C NMR and IR Data of the Sodium Ferrocenecarboxylate Salt **27a** and the Carboxylate Propylammonium Salt [$Fe(\eta^5-C_5H_4CO_2^-PrNH_3^+)(\eta^5-C_5H_5)$], **28**, in D₂O

compound	${}^{I}H_{\beta}/{}^{I3}C_{\beta} \delta(\mathrm{ppm})$	${}^{I}H_{\gamma}/{}^{I3}C_{\gamma} \delta(\text{ppm})$	$^{1}\text{H}/^{13}\text{C(CH}_{2}\text{NH}_{3}^{+}) \delta(\text{ppm})$	IR- CO(cm ⁻¹) KBr
$[Fe(\eta^5-C_5H_4CO_2^-Na^+)(\eta^5-C_5H_5)], 27a$	4.59/76.3	4.36/70.7		1533
Pr-NH ₂ , 17	,	,	2.64/42.7	
$[Fe(\eta^5 - C_5H_4CO_2^-PrNH_3^+)(\eta^5 - C_5H_5)], 28$	4.61/70.73	4.37/70.01	2.90/40.9	1518

sodium azide, affording the new long-arm polyazide dendrimers **33** (G_0 -long-9- N_3), **34** (G_1 -27-long- N_3), **35** (G_4 -729-long- N_3), and **36** (G_7 -19683-long- N_3)₁₉₆₈₃) (Scheme 3).

2.2.2. Synthesis of the Alkyne Derivatives of Complex 1. Two alkyne derivatives of complex 1 were obtained by coupling reaction between freshly prepared $[Fe(\eta^5-C_5H_4-COCI)(\eta^6-C_6Me_6)][PF_6]$, **3**, and propagyl amine and propargyl alcohol (following the same procedure shown on eq 1). The new propargyl ester and propargyl amide complexes $[Fe(\eta^5-C_5H_4CO_2CH_2C\equiv CH)(\eta^6-C_6Me_6)][PF_6]$, **37**, and $[Fe(\eta^5-C_5H_4CONHCH_2C\equiv CH)(\eta^6-C_6Me_6)][PF_6]$, **38**, were obtained in high yields and fully characterized (Scheme 4).

2.2.3. CuAAC Reactions between the Giant Azide Dendrimers and Alkyne Derivatives of the Iron Complexes. The CuAAC reaction between the iron complexes 33 and 34 with the new long-arm polyazide-terminated dendrimers was carried out in CH_2Cl_2/H_2O (1:1), using $CuSO_4/$ sodium ascorbate as the Cu¹ source. The completion of all the "click" reactions was verified by IR spectroscopy by the disappearance of the azide band at 2097 cm⁻¹, and by ¹H NMR showing the appearance of the new triazole

Scheme 3. Synthesis of the Long-Arm Polyazide Dendrimers, Example of G₀

Scheme 4. CuAAC Reaction between the Long-Arm Azido Dendrimers and the Propargyl Iron Complexes Yielding the "Click" Metallodendrimers

protons at 7.99 ppm and the disappearance of the CH_2N_3 signal at 3.25 ppm.

When using the propargyl ester iron complex 37, the "click" reaction easily afforded the metallodendrimers 39 and 40 bearing 9 and 27 [Fe(η^5 -C₅H₄CO₂R)(η^6 -C₆Me₆)]-[PF₆] complexes, respectively (Scheme 4 and Chart 4). Attempts to synthesize the G₂ analogue (81 termini), led to characterization by IR showing the absence of the azido band and by ¹H NMR, including the observation of the triazole protons, indicating completion of the "click" reaction. However, the compound became completely insoluble in all solvents after recording the ¹H NMR spectrum in CD₃CN, thus, record of the ¹³C NMR spectrum and further characterization were not possible.

For the "click" reactions carried out with the propargyl amide iron complex **38**, four generations of metallodendrimers bearing theoretical numbers of 9, 27, 729, and 19 683 [Fe(η^5 -C₅H₄CO₂R)(η^6 -C₆Me₆)][PF₆] species respectively (**41**-**44**) were obtained as orange powders that were completely soluble in acetone (Scheme 4 and Chart 4). The high solubility of these "click" metallodendrimers allowed their characterization by ¹H and ¹³C NMR, UVvis spectroscopy, cyclic voltammetry (CV), and dynamic light scattering (for the higher generations). These compounds only became completely insoluble orange solids after several days of storage at air conditions and room temperature.

3. Characterization of the Metallodendrimers. All the metallodendrimers reported here were characterized by ¹H and ¹³C NMR, elemental analysis, UV–vis spectroscopy, and CV. Dynamic light scattering was used to measure the size of the giant metallodendrimers **43** and **44**.

3.1. UV-vis of the Metallodendrimers. As expected, the metallodendrimers bearing the complex [Fe(η^{2} - $C_5H_4COR(\eta^6-C_6Me_6)$ [PF₆] present an absorption band at 411-416 nm in the UV-vis spectra. This band is located at 416 nm for the amide derivatives, 413 nm for the ester derivatives, and 411 nm for the carboxylate complexes (Table 4). It was possible to estimate the number of terminal organoiron groups by UV-vis spectroscopy using the Lambert–Beer law, from the $\varepsilon/\varepsilon_0$ ratio between the molar extinction coefficient ε of the dendritic complex and that of the monomer, ε_0 (Table 4). The estimated number of terminal groups are in agreement with the expected structures up to G_4 , but much lower than the theoretical value for G_7 . This result was expected because of the large amounts of defects formed in the divergent construction. Similar agreements and discrepancies were Chart 4. Metallodendrimers G₀ and G₁ Synthesized by CuAAC Reactions

observed for the ferrocenyl dendrimers, indicating that the divergent construction is responsible for the defects rather than the final metal-loading step. The discrepancies become very large only with G_7 (14000 \pm 1000 terminal organoiron groups for a theoretical number of 19683). In addition, G_7 also presents the maximum ability to encapsulate inorganic salt impurities.¹⁶

3.2. Dynamic Light Scattering of the Giant Metallodendrimers. Dynamic Light Scattering (DLS) is a very useful technique to characterize the giant metallodendrimers because it allows to determine the size (hydrodynamic diameter) of the dendrimers in solution, and consequently calculate their diffusion coefficient (*D*) using the Stokes-Einstein equation: $D = kT/6\pi\eta R_h$, where R_h is the hydrodynamic radius, η is the solvent viscosity, *k* is the Boltzmann's constant, and *T* is the temperature. It is known that highgeneration dendrimers present globular shapes and, along the search of their physical properties, they are often assimilated to perfect spheres.^{17a-d} We also used this approximation to calculate the volume and the density of the metallodendrimers **43** and **44** (Table 5).

3.3. Cyclic Voltammetry. All the covalent and ionic metallodendrimers containing the organoiron group [Fe- $(\eta^5-C_5H_4COR)(\eta^6-C_6Me_6)$][PF₆] were studied by CV using DMF as the solvent, [*n*-Bu₄][PF₆] as the supporting electrolyte, and decamethylferrocene as the internal reference. A single reversible CV wave was observed, corresponding to the cathodic reduction Fe^{II} \rightarrow Fe^I (Figure 1 and Table 6). This CV wave is known from several reports for the family of monometallic complexes [Fe($\eta^5-C_5H_5$)(η^6 -arene)][PF₆].^{3,4a,12,31}

Table 6 gathers the data for all the compounds reported here. The CV wave is seemingly chemically and electrochemically reversible, but its observation was more or less marred by adsorption, and attempts to measure the number of electrons involved in the electron-transfer process did not work above G_0 , unlike with the ferrocenyl dendrimers (UV–vis spectroscopy was more appropriate for this purpose for the present family of compounds).

4. Reduction to Dendritic 19-Electron Fe^I Complexes and Multielectron-Reservoir Properties. Although several functional complexes of this family could be reduced to stable Fe^I, 19-electron complexes, dendritic branching is less favorable for the stability of these compounds. For instance, reduction of G₀-9-[Fe(η^5 -C₅H₄CO₂dendr)(η^6 -C₆Me₆)][PF₆], **41**, by the 19-electron complex **1** led to decomplexation of the organoiron sandwich fragment in the dendrimer, as indicated by the finding of the decoordinated arene C₆Me₆ in ¹H NMR.

Attempts to reduce the dendrimer 22 using Na/Hg or LiAlH₄ in THF or dimethyl ether (DME) failed because of the insolubility of both this dendritic 18-electron complex and the reductant in these solvents. The only reductant that proved to be efficient to reduce 22 was the 19-electron complex 1a. This electron-reservoir complex 1 has a redox potential of the $Fe^{II/I}$ couple that is 0.15 V more negative than that of the dendritic complex 22 because of the presence of the electron-withdrawing amido link on the cyclopentadienyl group of 22. Thus, stoichiometric reduction of the dendritic 18-electron complex 22 in MeCN using 64 equiv of complex 1a gave the dendritic 19-electron complex 22a (Scheme 5). The complex 22a shows the typical deep-bluegreen color of such 19-electron complexes, and it was also characterized by electron paramagnetic resonance (EPR) at 10 K (Figure 2), showing the classic rhombic distorted signal. The complex 22a decomposed around 0 °C.^{12a,18,32}

^{(31) (}a) Dessy, R. E.; Stary, F. E.; King, R. B.; Waldrop, M. J. Am. Chem. Soc. **1966**, 88, 471–472. (b) Nesmeyanov, A. N.; Denisovitch, L. I.; Gubin, S. P.; Vol'kenau, N. A.; Sirotkina, E. I.; Bolesova, I. N. J. Organomet. Chem. **1969**, 20, 169–174. (c) Astruc, D. Electron Transfer and Radical Processes in Transition Metal Chemistry; VCH: New York, 1995; Chapter 2.

Table 4. UV-vis Data for the Dendritic Complexes and Estimated Number of Metalated Branches Using the Lambert-Beer Law

complex	λ (nm)	theoretical number of branches	ε	calculated number of branches $(\varepsilon/\varepsilon_0)$
Covalent Bor	nds			
$[Fe(\eta^5-C_5H_4CONHCH_2CCH)(\eta^6-C_6Me_6)][PF_6], 38$	416	1	$\varepsilon_0 = 151$	
G_0 -9-[Fe(η^5 -C ₅ H ₄ CONH-)(η^6 -C ₆ Me ₆)][PF ₆], 19	416	9	12300	9 ± 1
$G_1-27-[Fe(\eta^5-C_5H_4CONH-)(\eta^6-C_6Me_6)][PF_6], 20$	416	27	4080	27 ± 1
$[Fe(\eta^5-C_5H_4CONHCH_2CCH)(\eta^6-C_6Me_6)][PF_6], 38$	416	1	$\varepsilon_0 = 151$	
$G_0-9-[Fe(\eta^5-C_5H_4CONHCH_2-1,2,3-triazolyl-dendr-)(\eta^6-C_6Me_6)][PF_6], 41$	416	9	1340	9 ± 1
$G_1-27-[Fe(\eta^5-C_5H_4CONHCH_2-1,2,3-triazolyl-dendr-)(\eta^6-C_6Me_6)][PF_6], 42$	416	27	4070	27 ± 1
G_4 -729-[Fe(η^5 -C ₅ H ₄ CONHCH ₂ -1,2,3-triazolyl-dendr-)(η^6 -C ₆ Me ₆)][PF ₆], 43	416	729	106000	700 ± 40
G_7 -19683-[Fe(η^5 -C ₅ H ₄ CONHCH ₂ -1,2,3-triazolyl-dendr-)(η^6 -C ₆ Me ₆)][PF ₆], 44	416	19683	2170000	14000 ± 1000
$[Fe(\eta^5-C_5H_4CO_2CH_2CCH)(\eta^6-C_6Me_6)][PF_6], 37$	413	1	$\varepsilon_0 = 394$	
G_0 -9-[Fe(η^5 -C ₅ H ₄ CO ₂ CH ₂ -1,2,3-triazolyl-dendr-)(η^6 -C ₆ Me ₆)][PF ₆], 39	413	9	3520	9 ± 1
Ionic Bond	s			
$[Fe(n^5-C_5H_4CO_2^-PrNH_3^+)(n^6-C_6Me_6)][PF_6]$, 23	411	1	$\varepsilon_0 = 321$	
$G_0-9-[Fe(\eta^5-C_5H_4CO_2^{-1}dendrNH_3^{+})(\eta^6-C_6Me_6)][PF_6], 24$	411	9	2700	9 ± 1
$G_{1}-27$ -[Fe($\eta^{5}-C_{5}H_{4}CO_{2}^{-}$ dendrNH ₃ ⁺)($\eta^{6}-C_{6}Me_{6}$)][PF ₆], 25	411	27	8500	27 ± 1
$G_2-81-[Fe(\eta^5-C_5H_4CO_2^-dendrNH_3^+)(\eta^6-C_6Me_6)][PF_6], 26$	411	81	25800	81 ± 1

Table 5. Hydrodynamic Diameters of the "Clicked" Giant Metallodendrimers Obtained by DLS, and Calculated Diffusion Coefficient, Volume and Density

product ^a , ^b	$MM (g mol^{-1})$	hydrodynamic diameter ^{c} (nm)	diffusion coefficient (m ² s ^{-1})	volume ^{d} (m ³)	density (kg/m ³)
G ₄ -FE (43)	666 158	26.6 ± 0.5	5.37×10^{-14}	$(9.9 \pm 0.2) \times 10^{-24}$ (1.0 + 0.4) × 10^{-23}	110 ± 20
G ₇ -FE (44)	18 008913	33.2 ± 1.7	2.93×10	$(1.9 \pm 0.4) \times 10$	1360 ± 40

 a G₄-FE (**36**) = G₄-729-[Fe(η^{5} -C₅H₄CONHCH₂-1,2,3-triazolyl-dendr-)(η^{6} -C₆Me₆)][PF₆]; G₇-FE (**37**) = G₇-19683-[Fe(η^{5} -C₅H₄CONHCH₂-1,2,3-triazolyl-dendr-)(η^{6} -C₆Me₆)][PF₆]. b It was not possible to obtain the hydrodynamic diameters of G₀ and G₁ dendrimers by DLS because they are below the lower limit of the technique. c Measured in acetone at 25 °C. d Considering the globular shape of the dendrimer as a perfect sphere ($V = (4/3)\pi r^{3}$).

Reduction of C_{60} at -30 °C in situ (MeCN) by **22a** gave an insoluble precipitate that was characterized as the stable complex **45** (Chart 5) by the known EPR signal of $C_{60}^{\bullet-33}$ (Figure 3) and its Mössbauer spectrum showing the characteristic doublet of the Fe^{II} sandwich complex (Figure 4).³⁴

Concluding Remarks

Branching the 18-electron complex $[Fe(\eta^5-C_5H_4COR)(\eta^6-$ C₆Me₆)][PF₆] onto the tether termini of large dendrimers was planned to form redox-robust complexes that might ultimately serve as molecular batteries. Various branching modes are presented here. Previous branching via the C₆Me₆ ligand subsequent to C–H activation of this ligand by O_2 in the 19electron complex 1a failed because of the insolubility of the small dendritic complexes. Branching via the amino group of the arene ligand in complexes of the type $[Fe(\eta^2-C_5H_5)(\eta^6 C_6H_5NHR$)] would not be satisfactory because of the instability of such 19-electron complexes of functional arenes even below room temperature. Branching using the carboxylic acid was still the best choice given the recently reported thermal stability of various 19-electron Fe^I complexes of the type $[\text{Fe}^{I}(\eta^{5}-\text{C}_{5}\text{H}_{4}\text{R}')(\eta^{6}-\text{C}_{6}\text{Me}_{6})]$ (R' = carboxylate, ester, thioester, amide) at room temperature.^{13c}

Thus, covalent branching via an amido linkage with the Cp ligand has been possible in the present work for various dendrimers up to a theoretical number of 64 groups. It has

Figure 1. Cyclic voltammogram obtained for G_4 -729-[Fe(η^5 -C₅H₄-CONHCH₂-1,2,3-triazolyl-dendr-)(η^6 -C₆Me₆)][PF₆], **43** in DMF.

also been shown here that the bond-lengthening strategy, already used earlier for the synthesis of giant ferrocenyl and cobaltocenyl dendrimers,^{16,17} combined with the CuAAC "click" reaction, leads to large organoiron dendrimers with the amido linkage in [Fe(η^5 -C₅H₄CONH-dendr-)(η^6 -C₆Me₆)]-[PF₆]. The ester linkage was also probed here, and its limit was provided both by the insolubilization of the G₂-81-metallodendrimer and by the decomplexation at ambient temperature of the dendritic Fe^I, 19-electron complexes. This latter feature recalls the decreased thermal stability of the Fe^I, 19-electron complexes [Fe^I(η^5 -C₅H₅)(η^6 -C₆R₆)] when the length of the alkyl substituents R increases.³⁵

Finally, ionic bonding by reactions between the aminoterminated dendrimers and the carboxylic acid was achieved here also with up to 81 organoiron groups. The ionic strategy is limited by the solubility of the dendritic polyamine to 81 terminal branches, because the 243-amino dendrimer is not soluble in THF, unlike the smaller amino-terminated

⁽³²⁾ Rajasekharan, M. V.; Giezynski, S.; Ammeter, J. H.; Oswald, N.; Hamon, J.-R.; Michaud, P.; Astruc, D. J. Am. Chem. Soc. **1982**, *104*, 2400– 2407; See also ref 31, Chapter 3.

⁽³³⁾ Hirsch, A. *The Chemistry of Fullerenes*; Thieme: Stutgart, 1994; Chapter 2.

⁽³⁴⁾ Mariot, J.-P.; Michaud, P.; Lauer, S.; Astruc, D.; Trautwein, A. X.; Varret, F. J. Phys. (Paris) **1983**, 44, 1377–1385.

⁽³⁵⁾ Hamon, J.-R.; Hamon, P.; Boukheddaden, K.; Linarès, J.; Varret, F.; Astruc, D. *Inorg. Chim. Acta* **1995**, *240*, 105–108.

Table 6. Redox Potentials	s of the	Complexes	Obtained	by CV
---------------------------	----------	-----------	----------	-------

1 2	
complexes	$E_{1/2}(V)^{6}$
Ionic Complexes	
$G_0-9-[Fe(\eta^5-C_5H_4CO_2^-dendrNH_3^+)(\eta^6-C_6Me_6)]-$	-1.680
G_2 -81-[Fe(η^5 -C ₅ H ₄ CO ₂ ⁻ dendrNH ₃ ⁺)(η^6 -C ₆ Me ₆)]- [PF ₆], 26	-1.680
Covalent Complexes	
$G_0-9-[Fe(\eta^5-C_5H_4CO_2CH_2-1,2,3-triazolyl-dendr-)-(\eta^6-C_2M_{e2})]PE_{e1}$ 39	-1.220
$G_0-9-[Fe(\eta^5-C_5H_4CONH-)(\eta^6-C_6Me_6)][PF_6], 19$	-1.360
$G_1-27-[Fe(\eta^5-C_5H_4CONH-)(\eta^6-C_6Me_6)][PF_6], 20$	-1.360
$G_0-9-[Fe(\eta^5-C_5H_4CONHCH_2-1,2,3-triazolyl-dendr-)-(\eta^6-C_6Me_6)][PF_6], 41$	-1.320
G_1 -27-[Fe(η^5 -C ₅ H ₄ CONHCH ₂ -1,2,3-triazolyl-dendr-)- (η^6 -C ₂ Me ₂)/[PE-1] 42	-1.320
G_4 -729-[Fe(η^3 -C ₅ H ₂ (ONHCH ₂ -1,2,3-triazolyl-dendr-)-	-1.320
$(\eta^{-1} - c_{5}Me_{6}) r^{-1}c_{5} + 45$ G ₇ -19683-[Fe(η^{-5} -C ₅ H ₄ CONHCH ₂ -1,2,3-triazolyl-dendr-)- $(\tau_{5}^{6}$ C Ma VIDE 1 44	-1.320
$(7) - \bigcup_{G} [V_1 \cup_G] \Gamma \cap_G , 44$	

^{*a*} CV recorded at 0.200 V s⁻¹; 20 °C. Solvent: dimethylformamide. Compare [CpFe(η^6 -C₆Me₆][PF₆], **1**, that has an $E_{1/2}$ value of -1.425 V vs Cp₂*Fe in DMF.^{4a,12a,12b}

Scheme 5. Reduction $Fe^{II} \rightarrow Fe^{I}$ in the Dendrimer G_4 -DAB-64-[Fe- $(\eta^5-C_5H_4CONH-)(\eta^6-C_6Me_6)$][PF6], **22** Using Complex **1a** and Producing the Dendritic 19-Electron Complex G_4 -DAB-64-[Fe^I($\eta^5-C_5H_4$ -CONH-dendr-)($\eta^6-C_6Me_6$)], **22a**

dendrimers. It is probable that quadruple-ion aggregates are present in these ionic bonds, involving both PF_6^- and carboxylate anions and both iron-centered and ammonium cations.

The strategy involving combination of bond-lengthening and "click" reaction turned out to be the most valuable one, as in the metallocene series. Indeed, it was the only one that could lead to large organoiron dendrimers of this type. All of the strategies are limited to G_1 or G_2 except when the dendritic tethers are lengthened as for the syntheses of large ferrocenyl and cobaltocenyl metallodendrimers. In this case, amido "click" dendrimers could be synthesized up to G_7 with 14 000 \pm 1 000 cationic organoiron termini.

Exergonic reduction of the 18-electron Fe^{II} metallodendrimers to 19-electron Fe^{I} metallodendrimers at low temperature is only possible, for solubility reasons, using the classic electron-reservoir complex [$Fe^{I}(\eta^{5}-C_{5}H_{5})(\eta^{6}-C_{6}Me_{6})$], **1a**, as shown with the reduction of the 18-electron metallodendrimer G₄-DAB-64-[$Fe^{II}(\eta^{5}-C_{5}H_{4}CONH-dendr)(\eta^{6}-C_{6}-Me_{6})$], **22**, in MeCN. The dendritic 19-electron complex **22a** generated in this way serves as a reservoir of approximately

Figure 2. Left: Cyclovoltammogram of the dendritic 18-electron complex G_4 -DAB-64-[Fe^{II}(η^5 -C₅H₄CONH-dendr)(η^6 -C₆Me₆)], **22** in MeCN, scan rate 0.1 V s⁻¹. Supporting electrolyte: [*n*-Bu₄N][PF₆]. Reference: ferrocene (Fc). Right: EPR spectrum of the dendritic 19-electron complex G₄-DAB-64-[Fe^I(η^5 -C₅H₄CONH-dendr)(η^6 -C₆Me₆)], **22a**, generated as shown in Scheme 5, with 3 g values and rhombic distortion that are characteristic of the Fe^ICp(η^6 -arene) family.^{12a,18,32}.

64 electrons to reduce 64 C_{60} molecules to 64 C_{60} •⁻ at -30 °C in acetonitrile.

Experimental Section

General Data. For general data including solvents, apparatuses, compounds, reactions, spectroscopies and CV, see the Supporting Information. G_n indicates the generation number *n*. The mononuclear complexes $[Fe(\eta^5-C_5H_4CO_2H)(\eta^6-C_6Me_6)]$ [PF₆], **2**, and $[Fe(\eta^5-C_5H_4COCI)(\eta^6-C_6Me_6)]$ [PF₆], **3**, were synthesized according to ref 13c.

General Synthesis of Amine Dendrimers. A suspension of LiAlH₄ (1.5 equiv per branch) in 20 mL of THF cooled at 0 °C under nitrogen, was added dropwise to a solution of azido-terminated dendrimer in 10 mL of THF, that was also cooled at 0 °C under nitrogen. The reaction mixture was stirred for 6 h at 0-8 °C under nitrogen. After slow, cautious addition of H₂O (9 equiv per branch), the gray mixture was stirred at 0 °C for 20 min and filtered over a pad of Celite under nitrogen. The solvent was removed, yielding a colorless solid.

G₀-9-NH₂, 14. The nona-amine dendrimer 14 was synthesized from G₀-9-N₃ (0.100 g, 0.066 mmol), LiAlH₄ (0.034 g, 0.89 mmol) and H₂O (0.096 mL, 5.34 mmol) using the general procedure for the synthesis of amino dendrimers. The product was obtained as a white solid (0.068 g, 81% yield). ¹H NMR (CD₃CN, 200 MHz), δ_{ppm}: 7.07 (s, 3H, CH core), 2.13 (s, 18H, SiCH₂NH₂), 1.70 (m, 18H, C_qCH₂CH₂CH₂Si), 1.47 (s, 18H, SiCH₂NH₂), 1.16 (m, 18H, C_qCH₂CH₂CH₂Si), 0.55 (m, 18H, C_qCH₂CH₂CH₂Si), 0.00 (s, 54H, Si(CH₃)₂CH₂NH₂). ¹³C NMR (CD₃CN, 50 MHz), δ_{ppm}: 145.7 (C_q of arom. core), 121.6 (CH of arom. core), 43.7 (C_qCH₂CH₂CH₂Si), 41.9 (C_qCH₂CH₂CH₂Si), 29.9 (Si(CH₃)₂CH₂NH₂), 17.8 (C_qCH₂CH₂CH₂Si), 14.4 (C_q-CH₂CH₂CH₂Si), -5.0 (Si(CH₃)₂CH₂NH₂). Anal. Calcd for C₆₃H₁₄₇Si₉N₉: C 58.90, H 11.45; found: C 57.97, H 11.37.

G₁-27-NH₂, **15.** The 27-arm amine dendrimer **15** was synthesized from G₁-27-N₃ (0.31 g, 0.049 mmol), LiAlH₄ (0.075 g, 1.97 mmol), and H₂O (0.02 mL, 2.82 mmol) using the general procedure for the synthesis of amine dendrimers. The product was obtained as a colorless solid (0.214 g, 79% yield). ¹H NMR (CDCl₃, 200 MHz), δ_{ppm} : 7.22 (d, 18H, arom.), 6.86 (d, 18H, arom.), 7.07 (s, 3H, CH core), 3.54 (s, 18H, SiCH₂O), 2.14 (s, 54H, SiCH₂NH₂), 1.62 (m, 72H, C_qCH₂CH₂CH₂Si), 1.13 (m, 72H, C_qCH₂CH₂CH₂CH₂Si), 0.50 (m, 72H, C_qCH₂CH₂CH₂Si), 0.01 (s, 216H, Si(CH₃)₂CH₂NH₂). ¹³C NMR (CDCl₃, 50 MHz), δ_{ppm} : 159.3 (arom. OC_q), 139.7 (arom. C_q), 127.4 and 113.7 (arom. CH of dendron), 60.4 (SiCH₂O), 43.3 (C_qCH₂CH₂CH₂CH₂Si), 18.0 (C_qCH₂CH₂CH₂Si), 14.9 (C_qCH₂CH₂CH₂Si), -4.2 (Si-(CH₃)₂CH₂NH₂). Anal. Calcd for C₉₆₃H₁₉₄₇N₈₁O₃₆Si₁₁₇: C 61.78, H 10.67; found: C 60.92, H 10.65.

Chart 5. Dendr-64-NHCOCpFe(C_6Me_6)⁶⁴⁺, 64 $C_{60}^{\bullet-}$, 45, Resulting from the Reaction of 22a with C_{60} in MeCN/Toluene at $-30^{\circ}C$

G₂**-81-NH**₂, **16.** The 81-arm amine dendrimer **16** was synthesized from G₂-81-N₃ (0.100 g, 0.004 mmol), LiAlH₄ (0.018 g, 0.47 mmol), and H₂O (0.050 mL, 2.82 mmol) using the general procedure for the synthesis of amino-dendrimers. The product was obtained as a colorless solid (0.051 g, 63% yield). ¹H NMR (CDCl₃, 200 MHz), δ_{ppm} : 7.15 (d, 72H, arom.), 6.86 (d, 72H, arom.), 7.07 (s, 3H, CH core), 3.53 (s, 72H, SiCH₂O), 2.14 (s, 162H, SiCH₂NH₂), 1.63 (m, 234H, C_qCH₂CH₂CH₂CH₂Si), 1.10 (m, 234H, C_qCH₂CH₂CH₂CH₂Si), 0.00 (s, 702H, Si(CH₃)₂CH₂NH₂). ¹³C NMR (CDCl₃, 50 MHz), δ_{ppm} : 159.0 (arom. OC_q), 139.2 (arom. C_q), 127.2 and 113.4 (arom. CH of dendron), 60.1 (SiCH₂O), 42.9 (C_qCH₂CH₂CH₂CH₂Si), 17.7 (C_qCH₂CH₂CH₂Si), 14.6 (C_qCH₂CH₂CH₂Si), -4.3 (Si-(CH₃)₂CH₂NH₂). Anal. Calcd for C₉₆₃H₁₉₄₇N₈₁O₃₆Si₁₁₇: C 62.50, H 10.53; found: C 62.19, H 10.27.

General Synthesis of Metallocene Amido Dendrimers G_n- (3^{n+2}) -[Fe(η^5 -C₅H₄CONH-)(η^6 -C₆Me₆)][PF₆], (n=0-2). A suspension of 2 was heated in refluxing SOCl₂ (40 mL) for 16 h, and a homogeneous red solution was obtained. SOCl2 was removed using a trap-to-trap system under nitrogen atmosphere, and $[Fe(\eta^5-C_5H_4COCI)(\eta^6-C_6Me_6)][PF_6]$, **3**, was obtained as a red powder.^{13c} Then, the complex **3** (1.5 equiv per branch) was dissolved in dry dichloromethane and slowly added to a dichloromethane solution of amino dendrimer and triethylamine (10 equiv per branch). The mixture was stirred under nitrogen atmosphere for 12 h at room temperature. The solvent was removed under vacuum, and the solid residue was dissolved in dichloromethane and washed with an aqueous solution of K_2CO_3 , then with an aqueous solution of HPF₆. The organic solution was dried over sodium sulfate, filtered, and removed under vacuum. The product was precipitated with dichloromethane/ether. The product was obtained as an orange powder.

 $G_0-9-[Fe(\eta^5-C_5H_4CONH-dendr)(\eta^6-C_6Me_6)][PF_6], 19.$ The metallodendrimer 19 was synthesized from 14 (0.50 g; 0.039 mmol), 2 (0.248 g; 0.526 mmol), SOCl₂ (40 mL), and triethylamine (0.354 g, 3.50 mmol) using the general procedure for the synthesis of the metallocene amido dendrimers G_n -(3^{*n*+2})-[Fe- $(\eta^5 - C_5 H_4 CONH-)(\eta^6 - C_6 Me_6)][PF_6], (n = 0, 2).$ The product was obtained as a dark orange solid (0.150 g, 71% yield). ¹H NMR (CD₃CN, 200 MHz), δ_{ppm} : 7.02 (s, 3H, CH core), 6.74 (s, 9H, CpCONHCH₂Si), 4.90 (s, 18H, Cp), 4.68 (s, 18H, Cp), 2.93 (s, 18H, CpCONHCH₂Si), 2.42 (s, 162H, CH₃Ar), 1.66 (m, 18H, C_qCH₂CH₂CH₂Si), 1.14 (m, 18H, C_qCH₂CH₂CH₂Si), 0.57 (m, 18H, C_qCH₂CH₂CH₂Si), 0.04 (s, 54H, Si(CH₃)₂CH₂NH₂). ¹³C NMR (CD₃CN, 50 MHz), δ_{ppm} : 162.1 ($C_q = O$), 145.7 (C_q of arom. core), 126.9 (CH of arom. core), 99.2 (Cq of C₆Me₆), 84.2 (Cq of Cp), 79.6 and 75.7 (CH of Cp), 43.6 (C_qCH₂CH₂CH₂Si), 41.5 $(C_{q}CH_{2}CH_{2}CH_{2}Si)$, 29.4 $(Si(CH_{3})_{2}CH_{2}NH_{2})$, 17.5 (C_aCH₂CH₂CH₂Si), 16.0 (CH3Ar), 14.7 (C_qCH₂CH₂CH₂Si), -4.4 (Si(CH₃)₂CH₂NH₂). Anal. Calcd for C₂₂₅H₃₃₆N₉O₉₋ Si₉P₉F₅₄: C 55.52, H 6.90; found: C 54.23, H 6.91. IR $\nu_{c=0}$: 1653 cm⁻

G₁-27-[**F**e(η^5 -**C**₅**H**₄**CONH-dendr**)(η^6 -**C**₆**Me**₆)][**PF**₆], 20. The complex 20 was synthesized from 15 (0.50 g, 0.009 mmol), 2 (0.171 g, 0.362 mmol), SOCl₂ (40 mL), and triethylamine (0.244 g, 2.413 mmol) using the general procedure for the synthesis of the amido metallodendrimers **G**_n-(3^{n+2})-[**F**e(η^5 -**C**₅**H**₄**CONH-dendr**)(η^6 -**C**₆**Me**₆)][**PF**₆], (*n* = 0, 2). The product was obtained as a dark orange solid (0.090 g, 58% yield). ¹H NMR (CD₃CN, 200 MHz), δ_{ppm} : 7.20 and 6.86 (d, 36H, arom.), 6.71 (s, 27H, SiCH₂NHCO), 4.90 (s, 54H, Cp), 4.67 (s, 18H, Cp), 3.57 (s, 18H, SiCH₂O), 2.90 (d, 54H, CpCONHCH₂Si), 2.40 (s, 486H, CH₃Ar), 1.66 (m, 72H, C_qCH₂CH₂CH₂Si), 1.18 (m, 72H, C_qCH₂CH₂CH₂Si), 0.59 (m, 72H, C_qCH₂CH₂CH₂Si), 0.05 (s, 216H, Si(CH₃)₂CH₂NH₂). ¹³C NMR (CD₃CN, 50 MHz),

Figure 3. EPR spectrum of **45** in frozen MeCN at 10 K displaying the $C60^{-5}$ signal.³².

Figure 4. Mössbauer spectrum of 45 displaying the simple quadrupole doublet characteristic of the Fe^{II} center of the 1^+ salts.

 $\delta_{\rm ppm}$: 162.3 ($C_{\rm q}$ =O), 158.9 (arom. $C_{\rm q}$ O), 139.0 (arom. Cq of dendron), 131.7 and 127.2 (arom. CH of dendron), 99.3 (Cq of C₆Me₆), 84.3 (Cq of Cp), 79.8 and 75.9 (CH of Cp), 60.2 (SiCH₂O), 42.8 (CqCH₂CH₂CH₂Si), 41.4 (CqCH₂CH₂CH₂Si), 29.4 (Si(CH₃)₂CH₂NH₂), 17.6 (CqCH₂CH₂CH₂Si), 16.2 (CH₃-Ar), 14.7 (CqCH₂CH₂CH₂Si), -4.4 (Si(CH₃)₂CH₂NH₂). Anal. Calcd for C₇₇₄H₁₁₆₄N₂₇O₃₆Si₃₆P₂₇F₁₆₂: C 55.52, H 6.90; found: C 55.38, H 6.86. IR $\nu_{\rm c=o}$: 1657 cm⁻¹.

 $G_4-DAB-64-\{[Fe^{II}(\eta^5-C_5H_4CONH-dendr)(\eta^6-C_6Me_6)][PF_6]\},\$ 22. The dendrimer DAB-dendr-(NH₂)₆₄ 21 (0.080 g, 0.0112 mmol) and triethylamine (0.156 mL, 1.07 mmol) were dissolved in 20 mL of dry CH₂Cl₂. A solution of **3**, (0.500 g, 1.07 mmol) in 40 mL of CH₃CN was added dropwise to this mixture. The solution was stirred at room temperature overnight, then the solvent was removed under vacuum, the solid residue was washed twice with saturated sodium carbonate solution and twice with water, dissolved in CH₃CN and dried over sodium sulfate. After filtration, the volume was reduced to 5 mL, and precipitation from this solution with 50 mL of dry CH_2Cl_2 gave the dendrimer 22 as a brown powder (0.101 g, 25% yield). ¹H NMR (CD₃CN, 200 MHz), δ_{ppm}: 7.69 (br, 64H, NH); 4.9 (br. 128H, C₅H₄); 4.6 (br. 128H, C₅H₄); 3.3 (br. 124H, NHCH₂); 2.3 (br. 1152H, CH₃ and 372H, CH₂HNCH₂); 1.69 and 1.49 (br. 252H, CH₂CH₂N). ¹³C NMR (CD₃CN, 50 MHz), δ_{ppm}: 162.7(C=O); 99.2 (C_q, <u>C</u>₆Me₆); 83.6 (Cq, C5H4); 79.6; 75.7 (CH, C5H4); 51.4 (CH2NCH2); 38.2 $(NHCH_2)$; 26.5 $(CH_2CH_2CH_3)$; 15.9 (CH_3) . IR (nujol, cm⁻¹): $3422 (\nu_{\rm NH}), 1649 (\nu_{\rm C=O}), 1532 (\nu_{\rm O=CNH}), 840 (PF_6).$ Anal. Calcd. for C₁₅₂₈H₂₂₂₄NOFe₆₄P₆₄F₃₈₄: C 50.65, H 6.17; found: C 48.73; H 6.23. *E*_{1/2} (V vs FeCp^{*}₂, DMF, 20 °C): −1.370 V.

General Synthesis of $[Fe(\eta^5-C_5H_4CO_2^-NH_3^+Pr)(\eta^6-C_6Me_6)]$ -[PF₆], 23, and $G_{n^-}(3^{n+2})$ -[Fe($\eta^5-C_5H_4CO_2^-NH_3^+$ dendr)($\eta^6-C_6^-Me_6$)][PF₆], (n = 0-2), 24–26. The complex 2 (1 equiv per amine group) in 5 mL of acetonitrile was added dropwise at ambient temperature under nitrogen to a solution of amino dendrimer in 5 mL of acetonitrile. After 5 min of agitation, the solvent was evaporated, and an orange powder was obtained.

[Fe(η^5 -C₅H₄CO₂⁻PrNH₃⁺)(η^6 -C₆Me₆)][PF₆], 23. The complex 23 was synthesized from propylamine (0.025 g, 0.43 mmol)

and **2** (0.200 g, 0.423 mmol) using the above general procedure for the synthesis of $[Fe(\eta^5-C_5H_4CO_2^-NH_3^+Pr)(\eta^6-C_6Me_6)]$ - $[PF_6]$ and G_n -(3^{n+2})- $[Fe(\eta^5-C_5H_4CO_2^-NH_3^+dendr)(\eta^6-C_6Me_6)]$ - $[PF_6]$. The product **23** was obtained as an orange powder (0.221 g; 99% yield). ¹H NMR (CD₃CN, 200 MHz), δ_{ppm} : 4.73 and 4.55 (s, 4H, Cp), 2.97 (t, 2H, ⁺NH₃CH₂CH₂CH₃), 2.44 (s, 18H, C_6Me_6), 1.78 (m, 2H, ⁺NH₃CH₂CH₂CH₃), 1.06 (t, 2H, ⁺NH₃CH₂CH₂-CH₃). ¹³C NMR (CD₃CN, 50 MHz), δ_{ppm} : 168.1 (C=O), 98.6 (C₆Me₆), 88.3 (Cq of Cp), 79.3 and 78.3 (CH of Cp), 16.0 (CH₃ of C₆Me_6). Anal. Calcd for C₂₁H₃₂NO₂FePF₆: C 47.45, H 6.02; found: C 46.62, H 5.80

 $G_0-9-[Fe(\eta^5-C_5H_4CO_2^-dendrNH_3^+)(\eta^6-C_6Me_6)][PF_6], 24.$ The complex 24 was synthesized from 14 (0.025 g, 0.020 mmol) and 2 (0.083 g, 0.175 mmol) using the above general procedure for the synthesis of G_n -(3^{*n*+2})-[Fe(η^5 -C₅H₄CO₂⁻NH₃⁺dendr)(η^6 -C₆- Me_6][PF₆]. The product was obtained as an orange powder (0.106 g, 99% yield). ¹H NMR (CD₃CN, 200 MHz), δ_{ppm} : 6.95 (s, 3H, CH core), 4.73 and 4.58 (s, 36H, Cp), 2.42 (m, 162H of C_6Me_6 and 18H of SiC H_2 NH₃⁺), 1.60 (s, 18H, C_qC H_2 CH₂CH₂Si), 1.08 (s, 18H, $C_qCH_2CH_2CH_2Si$), 0.65 (s, 18H, $C_qCH_2CH_2CH_2Si$), 0.15 (s, 54H, Si(CH_3)₂CH₂NH₃⁺). ¹³C NMR (CD₃CN, 50 MHz), δ_{ppm} : 167.9 (C=O), 145.5 (C_q of arom. core), 121.5 (CH of arom. core), 98.7, (Cq of C₆Me₆), 87.4 (Cq of Cp), 79.5 and 78.2 (CH of Cp), 43.6 (C_qCH₂CH₂CH₂Si), 41.5 (C_qCH₂CH₂CH₂Si), 27.1 (Si(CH₃)₂CH₂NH₃⁺), 17.5 (C_qCH₂CH₂CH₂Si), 15.9 (CH₃ of C_6Me_6), 14.3 ($C_qCH_2CH_2CH_2Si$), -4.5 ($Si(CH_3)_2CH_2NH_3^+$). Anal. Calcd for C₂₂₅H₃₅₄N₉O₁₈Si₉Fe₉P₉F₅₄: C 48.83, H 6.40; found: C 48.04, H 6.50.

 $G_1-27-[Fe(\eta^5-C_5H_4CO_2^-dendrNH_3^+)(\eta^6-C_6Me_6)][PF_6], 25.$ The complex 25 was synthesized from 15 (0.025 g, 0.005 mmol) and 2 (0.057 g, 0.121 mmol) using the above general procedure for the synthesis of G_n - (3^{n+2}) -[Fe $(\eta^5$ -C₅H₄CO₂-NH₃+dendr)- $(\eta^6$ -C₆Me₆)][PF₆]. The product was obtained as an orange powder (0.073 g, 89% yield). ¹H NMR CD₃CN, 200 MHz), δ_{ppm} : 7.14 (d, 18H, arom.), 6.80 (d, 18H, arom.), 4.76 and 4.58 (s, 108H, Cp), 3.48 (s, 18H, SiCH₂O), 2.41 (m, 486H of C₆Me₆ and 54H of SiCH₂NH₃⁺), 1.64 (m, 72H, C_qCH₂CH₂CH₂Si), 1.12 $(m, 72H, C_qCH_2CH_2CH_2Si), 0.64 (m, 72H, C_qCH_2CH_2CH_2Si),$ 0.14 (s, 216H, Si(CH₃)₂CH₂NH₂). ¹³C NMR (CD₃CN, 50 MHz), δ_{ppm} : 167.6 (C=O), 158.9 (arom. OC_q), 139.3 (arom. C_q), 127.2 and 113.2 (arom. CH of dendron), 98.8 (Cq of C₆Me₆), 86.1 (Cq of Cp), 79.6 and 78.2 (CH of Cp), 60.3 $(SiCH_2O)$, 42.8 $(C_qCH_2CH_2CH_2Si)$, 41.4 $(C_qCH_2CH_2CH_2Si)$, 27.2 (Si(CH₃)₂CH₂NH₃⁺), 17.3 (C_qCH₂CH₂CH₂Si), 16.1 (CH₃ of C_6Me_6), 14.3 ($C_qCH_2CH_2CH_2Si$), -4.7 ($Si(CH_3)_2CH_2NH_3^+$). Anal. Calcd for C₇₇₄H₁₂₁₈N₂₇O₆₃Si₃₆Fe₂₇P₂₇F₁₆₂: C 50.67, H 6.64; found: C 50.41, H 6.58.

 $G_2-81-[Fe(\eta^5-C_5H_4CO_2^-dendrNH_3^+)(\eta^6-C_6Me_6)][PF_6], 26.$ The complex 26 was synthesized from 16 (0.025 g, 0.0014 mmol) and 2 (0.052 g, 0.110 mmol) using the above general procedure for the synthesis of G_n -(3^{*n*+2})-[Fe(η^5 -C₅H₄CO₂⁻NH₃⁺dendr)- $(\eta^6-C_6Me_6)][PF_6]$. The product was obtained as an orange powder (0.072 g; 93% yield). ¹H NMR CD₃CN, 200 MHz), δ_{ppm} : 7.20 (d, 72H, arom.), 6.84 (d, 72H, arom.), 4.77 and 4.58 (s, 324H, Cp), 3.51 (s, 72H, SiCH₂O), 2.43 (m, 1458 H of C₆Me₆ and 162H of SiCH₂NH₃⁺), 1.67 (m, 243H, C_qCH₂CH₂CH₂Si), 1.13 (m, 243H, $C_qCH_2CH_2CH_2Si$), 0.66 (m, 243H, $C_qCH_2CH_2$ -CH₂Si), 0.16 (s, 702H, Si(CH₃)₂CH₂NH₂). ¹³C NMR (CD₃CN, 50 MHz), δ_{ppm} : 167.4 (C=O), 158.9 (arom. OC_q), 139.0 (arom. C_q), 127.2 and 113.2 (arom. CH of dendron), 98.9 (Cq of C₆Me₆), 85.0 (Cq of Cp), 79.8 and 78.2 (CH of Cp), 60.1 (SiCH₂O), 42.9 (C_qCH₂CH₂CH₂Si), 41.5 (C_qCH₂CH₂CH₂Si), 27.0 (Si(CH₃)₂CH₂NH₃⁺), 17.2 (C_qCH₂CH₂CH₂Si), 16.1 (CH₃ of C_6Me_6), 14.1 ($C_qCH_2CH_2CH_2Si$), -4.5 ($Si(CH_3)_2CH_2NH_3^+$). Anal. Calcd for C₂₄₂₁H₃₈₁₀N₈₁O₁₉₈Si₁₁₇Fe₈₁P₈₁F₄₈₆: C 51.18, H 6.71; found: C 49.21, H 6.58.

 $[Fe(\eta^5-C_5H_4CO_2^-Na^+)Cp]$, 27a. To a solution of NaOH (0.087 g, 0.217 mmol) in 5 mL of EtOH, was added 27 at ambient temperature. After stirring for 5 min, the solvent was

removed under vacuum, and the product **27a** was obtained as an orange powder (0.080 g, 98% yield). ¹H NMR (D₂O, 200 MHz), δ_{ppm} : 4.59 and 4.36 (s, 4H, Cp), 4.19 (s, 5H, Cp). ¹³C NMR (D₂O, 200 MHz), δ_{ppm} : 180 (C=O), 76.3 (Cq of Cp), 70.7 and 70.0 (CH of Cp), 69.6 (CH of Cp).

General Synthesis of Ferrocene Carboxylate Propylammonium, 28, and Polyammoniums 29–31. The complex 27 (1 equiv per branch or 1 equiv for propylamine) in 5 mL of THF was added dropwise at ambient temperature to a 5 mL-THF solution of amino-dendrimer at ambient temperature under nitrogen. A precipitate formed, and the solvent was evaporated, giving an orange powder.

[Fe(η^{5} -C₅H₄CO₂⁻PrNH₃⁺)Cp], 28. The complex 28 was synthesized from propylamine (0.025 g, 0.423 mmol) and 27 (0.097 g, 0.423 mmol) using the general procedure for synthesis of G_n-(3ⁿ⁺²)-[Fe(η^{5} -C₅H₄CO₂⁻NH₃⁺dendr)(η^{6} -C₆Me₆)][PF₆]. The product was obtained as an orange powder (0.121 g, 99% yield). ¹H NMR (D₂O, 200 MHz), δ_{ppm} : 4.60 and 4.37 (s, 4H, Cp), 4.20 (s, 5H, Cp), 2.90 (t, 2H, ⁺NH₃CH₂CH₂CH₃), 1.61 (m, 2H, ⁺NH₃CH₂CH₂CH₃), 0.91 (t, 3H, ⁺NH₃CH₂CH₂CH₃). ¹³C NMR (D₂O, 50 MHz) δ_{ppm} : 159.8 (C=O), 76.3 (Cq of Cp), 70.7 and 70.0 (CH of Cp), 69.5 (Cp), 40.9 (⁺NH₃CH₂CH₂CH₃), 20.1 (⁺NH₃CH₂CH₂CH₃), 9.9 (⁺NH₃CH₂CH₂CH₃). Anal. Calcd for C₁₄H₁₉NO₂Fe: C 58.13, H 6.57; found: C 57.97, H 6.53.

G₀-9-[**Fe**(η^{5} -**C**₅**H**₄**CO**₂⁻**dendrNH**₃⁺)**Cp**], **29.** The metallodendrimer **29** was synthesized from **14** (0.025 g, 0.020 mmol) and **27** (0.040 g, 0.175 mmol) using the general procedure for synthesis of ferrocenylcarboxylate ammonium dendrimers or propylammonium. The product was obtained as an orange powder (0.060 g; 92% yield). ¹H NMR (CD₃CN, 200 MHz), δ_{ppm} : 7.10 (s, 3H, CH core), 4.73 and 4.36 (s, 36H, Cp), 4.19 (s, 45H, Cp), 2.02 (s, 162H, SiCH₂NH₃⁺), 1.72 (s, 18H, C_qCH₂CH₂CH₂Si), 1.20 (s, 18H, C_qCH₂CH₂CH₂Si), 0.56 (s, 18H, C_qCH₂CH₂CH₂Si), 0.00 (s, 54H, Si(CH₃)₂CH₂NH₂). Anal. Calcd for C₁₆₂H₂₃₇N₉O₁₈. Si₉Fe₉: C 58.01, H 7.07; found: C 57.56, H 7.05.

G₁-27-[**Fe**(η^{5} -**C**₅**H**₄**CO**₂⁻**dendrNH**₃⁺)**Cp**], **30**. The metallodendrimer **30** was synthesized from **15** (0.025 g, 0.0013 mmol) and **27** (0.024 g, 0.103 mmol) using the general procedure for synthesis of ferrocenylcarboxylate ammonium dendrimers. The product was obtained as an orange powder (0.045 g, yield: 93%). ¹H NMR (CD₃)₂CO, 200 MHz), δ_{ppm} : 7.21 (d, 18H, CH arom.), 6.90 (d, 18H, CH arom.), 4.73 and 4.42 (s, 108H, Cp), 4.19 (s, 135H, Cp), 3.57 (s, 18H, SiCH₂O), 2.03 (s, 54H, SiCH₂NH₃⁺), 1.71 (m, 72H, C_qCH₂CH₂CH₂Si), 1.18 (m, 72H, C_qCH₂CH₂-CH₂Si), 0.52 (m, 72H, C_qCH₂CH₂CH₂Si), 0.00 (s, 216H, Si-(CH₃)₂CH₂N). Anal. Calcd for C₅₈₅H₈₆₇N₂₇O₆₃Si₃₆Fe₂₇: C 59.54, H 7.35; found: C 59.53, H 7.37

G₂-81-[Fe(η⁵-C₅H₄CO₂⁻dendrNH₃⁺)Cp], 31. The metallodendrimer **31** was synthesized from **16** (0.027 g, 0.0014 mmol) and **27** (0.026 g, 0.117 mmol) using the general procedure for the synthesis of the ferrocenylcarboxylate ammonium dendrimers. The product **22** was obtained as an orange powder (0.050 g, 94% yield). ¹H NMR ((CD₃)₂CO, 200 MHz), δ_{ppm}: 7.23 (d, 72H, CH arom.), 6.87 (d, 72H, CH arom.), 4.73 and 4.39 (s, 324H, Cp), 4.19 (s, 405H, Cp), 3.55 (s, 72H, SiCH₂O), 2.03 (s, 162H, SiCH₂-NH₃⁺), 1.69 (m, 234H, C_qCH₂CH₂CH₂Si), 1.19 (m, 234H, C_qCH₂CH₂CH₂Si), 0.00 (s, Si(CH₃)₂CH₂N). Anal. Calcd for C₁₈₅₄H₂₇₅₇N₈₁O₁₃₈₋Si₃₆Fe₈₁: C 59.93, H 7.42; found: C 59.05 H 7.77.

General Procedure for the Hydrosilylation Reactions. The olefin compound, diethyl ether, the silane derivative (2 equiv per branch) and Kartstedt catalyst (0.1%) were successively introduced into a Schlenk flask under a nitrogen atmosphere. The reaction solution was stirred at 25 °C for 16 h. The solvent was removed under vacuum and the catalyst residue was removed by flash chromatography with ether, and the solvent was removed.

General Procedure for the Synthesis of Azido Dendrimers. The chloromethyl-terminated dendrimers and NaN_3 (2 equiv per

branch) were introduced into a Schlenk flask, then dry DMF (30 mL) was added. The reaction mixture was heated at 80 °C for 12 h under magnetic stirring. After removing the solvent in vacuo, dichloromethane was added, and the mixture was filtered through Celite. The solvent was removed in vacuo, and the residue was washed with methanol (2×10 mL) and precipitated from a CH₂Cl₂ solution by addition of MeOH. After drying in vacuo, the azido dendrimers were obtained as colorless products.

Synthesis of (11-Bromoundecyl)dimethylsilane, 32. (i) 11-Bromo -1-undecene (4.29 g, 18.4 mmol), dimethylchlorosilane (3.48 g, 36.8 mmol), dry ethylic ether, and 12 drops of Kartstedt catalyst were successively introduced in a Schlenk flask. The reaction mixture was stirred under nitrogen atmosphere at room temperature for 16 h. The solvent and excess of dimethylchlorosilane were removed under vacuum, giving (11-bromoundecyl)chlorodimethylsilane (18.4 mmol) as a colorless oil. (ii) (11-Bromoundecyl)chlorodimethylsilane (18.4 mmol) was dissolved in dry ether and slowly added to a suspension of $LiAlH_4$ (6 g) in dry ether. The mixture was heated at 55 °C for 2 h. The solution was cooled at 0 °C, and an aqueous solution of HCl (35%) was added dropwise until it reached an acidic pH value. A 300 mL portion of ether and 100 mL of water were added, and the organic phase was extracted and dried over sodium sulfate, filtered, and the solvent was removed under vacuum. The product was purified by flash chromatography using silica gel with ether as the eluent, yielding (11-bromoundecyl)dimethylsilane (3.20 g, 59% yield). ¹H NMR (CDCl₃, 300 MHz), δ_{ppm}: 3.31 (m, 2H, CH₂Br), 1.84 (m, 2H, CH₂CH₂Br), 1.27 (m, 16H, $(CH_2)_8$, 0.58 (s, 2H, CH_2Si), 0.049 (s, 6H, $Si(CH_3)_2$). ¹³C NMR (CDCl₃, 62.90 MHz), δ_{ppm}: 34.3 (CH₂CH₂Br), 33.0 (CH_2Br) , 29.9 ($(CH_2)_8$), 10.5 (CH_2Si), -6.7 ($Si(CH_3)_2$). Anal. Calcd for C₁₃H₂₉SiBr: C 53.23, H 9.96; found: C 53.11, H 9.87.

Synthesis of G₀-long-N₃, 33. (i) Hydrosilylation of G₀-9-allyl 4 (0.050 g, 0.104 mmol) using the silane **32** (0.549 g, 1.87 mmol) was carried out using the general procedure for the hydrosilylation reactions giving G_0 -long-Br as a colorless waxy product (0.323 g, 99% yield). ¹H NMR (CDCl₃, 300 MHz), δ_{ppm} : 6.93 (s, 3H, CH core), 3.40 (m, 18H, CH₂Br), 1.84 (m, 18H, CH₂CH₂-Br), 1.57 (s, 18H, C_aCH₂CH₂CH₂Si), 1.26 (m, 144H, (CH₂)₈), 1.04 (s, 18H, $C_qCH_2CH_2CH_2Si$), 0.42 (s, 36H, CH_2SiCH_2), -0.10 (s, 54H, $Si(CH_3)_2$). ¹³C NMR (CDCl₃, 62.90 MHz), δ_{ppm} : 145.7 (C_{q} of arom. core), 121.5 (CH of arom. core), 43.9 $(C_qCH_2CH_2CH_2Si)$, 42.2 (benzylic C_q), 33.8 (CH_2CH_2Br), 32.8 (CH_2Br), 29.5 ((CH_2)₇), 24.0 (CH_2CH_2Si), 18.0 ($C_qCH_2CH_2$ -CH₂Si), 16.3 (CH₂Si), 15.6 (C_qCH₂CH₂CH₂Si), -3.1 (Si- $(CH_{3})_{2}$). ²⁹Si NMR (CDCl₃, 59.62 MHz), δ_{ppm} : 2.11 (*Si*(Me)₂). Mass spectrum (MALDI-TOF; m/z), calcd. for C₁₅₃H₃₀₉Si₉Br₉Na (MNa⁺): 3 144.04, found: 3 144.44. Anal. Calcd for C_{153} -H₃₀₉Si₉Br₉: C 58.88, H 9.98; found: C 59.63, H 10.24. (ii) The dendrimer 33 was synthesized from G_0 -long-Br (0.120 g, 0.0385 mmol) and NaN₃ (0.045 g, 0.693 mmol) using the general procedure for the synthesis of azido dendrimers, giving 33 as a colorless waxy product (0.106 g, 99% yield). ¹H NMR (CDCl₃, 300 MHz), δ_{ppm} : 6.93 (s, 3H, CH core), 3.25 (m, 18H, CH₂N₃), 1.58 (s, 36H, CH₂CH₂CH₂Si), 1.26 (m, 180H, (CH₂)₉ and CH₂CH₂CH₂Si), 0.43 (s, 36H, CH₂SiCH₂), -0.11 (s, 54H, Si- $(CH_3)_2$).¹³C NMR (CDCl₃, 62.90 MHz), δ_{ppm} : 145.8 (C_q of arom. core), 121.5 (CH of arom. core), 51.1 (CH₂N₃), 43.8 (C_qCH_2 -CH₂CH₂Si), 42.1 (benzylic C_q), 33.2 (CH₂CH₂N₃), 29.5 ((CH₂)₇), 23.4 (CH₂CH₂Si), 17.9 (C_qCH₂CH₂CH₂CH₂Si), 16.3 (CH₂Si), 14.9 $(C_0CH_2CH_2CH_2Si)$, -3.3 $(Si(CH_3)_2)$. ²⁹Si NMR (CDCl₃, 59.62 MHz), δ_{ppm} : 2.11 (*Si*(Me)₂). Anal. Calcd for C₁₅₃H₃₀₉Si₉N₂₇: C 58.88, H 9.98; found: C 59.63, H 10.24. IR v_{N3} : 2 097 cm⁻

Synthesis of G₁-long-N₃, 34. (i) Hydrosilylation of G₁-27-allyl 7 (0.050 g, 0.0159 mmol) with the silane 32 (0.249 g, 0.85 mmol) was carried out using the general procedure for the hydrosilylation reactions, yielding G₁-27-long-Br as a colorless waxy product (0.174 g, 98% yield). ¹H NMR (CDCl₃, 300 MHz),

 δ_{ppm} : 7.14 (d, 54H, arom), 7.05 (s, 3H, CH core), 6.84 (d, 54H, arom), 3.51 (s, 18H, CH₂O), 3.40 (m, 54H, CH₂Br), 1.85 (m, 54H, CH_2CH_2Br), 1.55 (s, 72 H, $C_qCH_2CH_2CH_2Si$), 1.25 (m, 144H, $(CH_2)_9$), 0.41 (s, 108H, CH_2SiCH_2), -0.10 (s, 54H, Si(CH₃)₂). ¹³C NMR (CDCl₃, 62.90 MHz), δ_{ppm} : 158.5 (arom. OC_q), 139.2 (arom. C_q), 126.7 and 112.9 (arom. CH of dendron), 59.7 (SiCH₂O), 42.6 ($C_qCH_2CH_2CH_2Si$), 41.2 (benzylic C_q), 33.3 (CH₂CH₂Br), 32.7 (CH₂Br), 29.2 ((CH₂)₇), 24.1 (CH₂CH₂-Si), 17.8 (C_qCH₂CH₂CH₂CH₂Si), 16.2 (CH₂Si), 15.3 (C_qCH₂CH₂-CH₂Si), -3.6 (Si(CH₃)₂). ²⁹Si NMR (CDCl₃, 59.62 MHz), δ_{ppm} : 2.12 ($Si(Me)_2$). Anal. Calcd for $C_{558}H_{1083}O_9Si_{36}Br_{27}$: C 60.35, H 9.83; found: C 59.81, H 9.80. (ii) The dendrimer **34** was synthesized from G1-long-Br (0.142 g, 0.0128 mmol) and NaN₃ (0.045 g, 0.693 mmol) using the general procedure for the synthesis of the azido dendrimers, giving 34 as a colorless waxy product (0.128 g, 99% yield). ¹H NMR (CDCl₃, 300 MHz), δ_{ppm} : 7.15 (d, 54H, arom), 7.05 (s, 3H, CH core), 6.84 (d, 54H, arom), 3.51 (s, 18H, CH₂O), 3.23 (m, 54H, CH₂N₃), 1.57 (s, 72 H, CqCH₂CH₂CH₂Si), 1.26 (m, 144H, (CH₂)₉), 0.42 (s, 108H, CH_2 SiC H_2), -0.10 (s, 54H, Si(CH_3)₂). ¹³C NMR (CDCl₃, 62.90 MHz), δ_{ppm} : 158.4 (arom. OC_q), 139.1 (arom. C_{q}), 126.7 and 112.9 (arom. CH of dendron), 59.7 (SiCH₂O), 51.1 (CH₂N₃), 42.6 (C_qCH₂CH₂CH₂Si), 41.2 (benzylic C_q), 33.3 (CH₂CH₂N₃), 32.7 (CH₂N₃), 29.3 ((CH₂)₇), 24.1 (CH₂CH₂Si), 17.8 (C_qCH₂CH₂CH₂CH₂Si), 16.2 (CH₂Si), 15.3 (C_qCH₂CH₂-CH₂Si), -3.6 (Si(CH₃)₂). ²⁹Si NMR (CDCl₃, 59.62 MHz), $\delta_{\rm ppm}$: 2.12 (*Si*(Me)₂).

Synthesis of G₄-long-N₃, 35. (i) Hydrosilylation of G₄-729-allyl 10 (0.050 g, 4.60. 10^{-4} mmol) using the silane 32 (0.197 g, 0.0671 mmol) was carried out using the general procedure for the hydrosilylation reactions, giving G_4 -729-long-Br as a colorless waxy product (0.142 g, 96% yield). ¹H NMR (CDCl₃, 300 MHz), δ_{ppm} : 7.12 (d, arom), 6.82 (d, arom), 3.50 (s, CH₂O), 3.38 (m, CH_2Br) , 1.86 (m, CH_2CH_2Br) , 1.57 $(s, C_qCH_2CH_2CH_2Si)$, 1.25 (m, (CH₂)₉), 0.42 (s, CH₂SiCH₂), -0.06 (s, Si(CH₃)₂). ¹³C NMR (CDCl₃, 62.90 MHz), δ_{ppm}: 158.4 (arom. OC_q), 139.1 (arom. C_q), 126.7 and 112.9 (arom. CH of dendron), 59.8 (SiCH₂O), 42.6 (C_qCH₂CH₂CH₂Si), 41.2 (benzylic C_q), 33.3 (CH₂CH₂Br), 32.7 (CH₂Br), 29.2 ((CH₂)₇), 24.1 (CH₂CH₂Si), 17.8 (C_qCH₂CH₂CH₂CH₂Si), 16.1 (CH₂Si), 15.2 (C_qCH₂CH₂CH₂-Si), -3.6 (Si(CH₃)₂). ²⁹Si NMR (CDCl₃, 59.62 MHz), δ_{ppm} : 2.12 $(Si(Me)_2)$. Anal. Calcd for $C_{16353}H_{31269}O_{360}Si_{1089}Br_{729}$. C 60.90, H 9.77; found: C 59.47, H 9.77. (ii) The dendrimer 34 was synthesized from G₄-long-Br (0.050 g, 0.000155 mmol) and NaN₃ (0.015 g, 0.226 mmol) using the general procedure for the synthesis of the azido dendrimers. The product 34 was obtained as a colorless waxy product (0.045 g, 98% yield). ¹H NMR (CDCl₃, 300 MHz), δ_{ppm} : 7.14 (d, arom), 6.84 (d, arom), 3.50 (s, CH₂O), 3.25 (m, CH₂N₃), 1.59 (s, C_qCH₂CH₂CH₂Si), 1.28 (m, (CH₂)₉), 0.42 (s, CH₂SiCH₂), -0.10 (s, Si(CH₃)₂). ¹³C NMR (CDCl₃, 62.90 MHz), δ_{ppm} : 158.4 (arom. OC_q), 138.9 (arom. C_q), 126.6 and 112.8 (arom. CH of dendron), 59.5 (SiCH₂O), 51.2 (CH₂N₃), 42.5 (C_qCH₂CH₂CH₂Si), 41.2 (benzylic C_q), 33.3 ($CH_2CH_2N_3$), 32.7 (CH_2N_3), 29.3 ((CH_2)₇), 24.1 (CH₂CH₂Si), 17.6 (C_qCH₂CH₂CH₂CH₂Si), 16.3 (CH₂Si), 15.3 $(C_q CH_2 CH_2 CH_2 Si), -3.6 (Si(CH_3)_2).$ ²⁹Si NMR (CDCl₃, 59.62 MHz), δ_{ppm} : 2.12 (*Si*(Me)₂).

Synthesis of G₇-long-N₃, 36. (i) Hydrosilylation of G₇-allyl **13** (0.050 g, 1.69. 10^{-5} mmol) with the silane **32** (0.195 g, 0.0666 mmol) was carried out using the general procedure for the hydrosilylation reactions, giving G₇-long-Br as a colorless waxy product (0.134 g, 91% yield). ¹H NMR (CDCl₃, 300 MHz), δ_{ppm} : 7.12 (d, arom), 6.78 (d, arom), 3.50 (s, CH₂O), 3.39 (m, CH₂Br), 1.82 (m, CH₂CH₂Br), 1.57 (s, C_qCH₂CH₂CH₂CH₂Si), 1.26 (m, (CH₂)₉), 0.41 (s, CH₂SiCH₂), -0.06 (s, Si(CH₃)₂). ¹³C NMR (CDCl₃, 62.90 MHz), δ_{ppm} : 158.3 (arom. OC_q), 139.1 (arom. C_q), 126.8 and 112.8 (arom. CH of dendron), 59.7 (SiCH₂O), 42.7 (C_qCH₂CH₂CH₂Si), 41.2 (benzylic C_q), 33.4 (CH₂CH₂-Br), 32.7 (CH₂Br), 29.4 ((CH₂)₇), 24.1 (CH₂CH₂Si), 17.8

 $(C_qCH_2CH_2CH_2Si)$, 16.1 (CH_2Si), 15.2 (C_qCH_2CH_2CH_2Si), -3.6 (Si(CH₃)₂). ²⁹Si NMR (CDCl₃, 59.62 MHz), δ_{ppm} : 2.13 $(Si(Me)_2)$.Anal. Calcd for $C_{442818}H_{846291}O_{9837}Si_{29520}Br_{19683}$: C 60.92, H 9.77; found: C 57.32, H 9.52. (ii) The dendrimer 35 was synthesized from G_7 -long-Br (0.050 g, 5.73. 10^{-6} mmol) and NaN_3 (0.015 g, 0.226 mmol) using the general procedure for the synthesis of azido dendrimers, giving 36 as a colorless waxy product (0.043 g, 93% yield). ¹H NMR (CDCl₃, 300 MHz), δ_{ppm} : 7.11 (d, arom), 6.78 (d, arom), 3.50 (s, CH₂O), 3.25 (m, CH_2N_3), 1.59 (s, $C_qCH_2CH_2CH_2Si$), 1.25 (m, $(CH_2)_9$), 0.42 (s, CH_2SiCH_2), -0.10 (s, $Si(CH_3)_2$). ¹³C NMR (CDCl₃, 62.90 MHz), δ_{ppm} : 158.5 (arom. OC_q), 138.8 (arom. C_q), 126.6 and 112.9 (arom. CH of dendron), 59.6 (SiCH₂O), 51.2 (CH₂N₃), 42.5 (C_qCH₂CH₂CH₂Si), 41.2 (benzylic C_q), 33.5 (CH₂CH₂N₃), 32.9 (CH_2N_3) , 29.3 $((CH_2)_7)$, 24.1 (CH_2CH_2Si) , 17.6 $(C_qCH_2CH_2CH_2Si)$, 16.3 (CH_2Si) , 15.3 $(C_qCH_2CH_2CH_2Si)$, -3.6 (Si(CH₃)₂). ²⁹Si NMR (CDCl₃, 59.62 MHz), δ_{ppm} : 2.12 $(Si(Me)_2).$

 $[Fe(\eta^{5}-C_{5}H_{4}CO_{2}CH_{2}C\equiv CH)(\eta^{6}-C_{6}Me_{6})][PF_{6}], 37. A sus$ pension of 2 (2 g, 5.75 mmol) was heated in refluxing SOCl₂ (40 mL) for 16 h, giving an homogeneous red solution of 3. SOCl₂ was removed using a trap-to-trap system under nitrogen atmosphere, and the red powder of 3 was dissolved in dry dichloromethane and slowly added to a dichloromethane solution of propargyl alcohol (0.644 g, 11.49 mmol) and triethylamine (3 mL). The mixture was stirred under nitrogen atmosphere for 2 h at room temperature. The solvent was removed under vacuum, dissolved with dichloromethane and washed with an aqueous solution of K₂CO₃ and with an aqueous solution of HPF₆. The organic solution was dried with sodium sulfate, filtered, and the solvent was removed under vacuum. The product was precipitated from dichloromethane with ether. The complex [(CpCO₂CH₂C=CH)(η^6 -C₆Me₆)Fe][PF₆], **37**, was obtained as an orange powder (2.35 g, 80% yield). ¹H NMR (CH₃COCH₃, 250 MHz), δ_{ppm} : 5.23 and 5.07 (s, 4H, Cp), 5.07 (s, 2H, OCH₂), 3.31 (s, 1H, C=CH), 2.54 (s, 18H, C₆Me₆). ¹³C NMR (CH₃COCH₃, 62.50 MHz), δ_{ppm}: 165.9 (C=O), 100.8 (Cq of C₆Me₆), 90.9 (Cq of Cp), 82.2 and 79.1 (CH of Cp), 81.7 $(C \equiv CH)$, 77.8 $(C \equiv CH)$, 53.8 (OCH_2) , 17.2 $(CH_3 \text{ of } C_6Me_6)$. Anal. Calcd for $C_{21}H_{25}O_2FePF_{6}$: C 49.41, H 4.90; found: C 49.57, H 4.94. IR $\nu_{c=0}$: 1726 cm⁻

 $[CpFe(\eta^6-C_6Me_6)CONHCH_2C \equiv CH][PF_6], 38. A suspension$ of $[CpFe(\eta^{6}-C_{6}Me_{6})COOH][PF_{6}]$ (0.550 g, 1.17 mmol) was heated in refluxing SOCl₂ (40 mL) for 16 h, and an homogeneous red solution was obtained; SOCl₂ was then removed using a trap-to-trap system under nitrogen atmosphere, and the complex 3 was obtained as a red powder. This complex 3 was dissolved in dry dichloromethane and slowly added to a dichloromethane solution of propargylamine (0.129 g, 2.34 mmol) and triethylamine (2 mL). The mixture was stirred under nitrogen atmosphere for 2 h at room temperature. The solvent was removed under vacuum, and the solid residue was dissolved in dichloromethane and washed with an aqueous solution of K_2CO_3 , then with an aqueous solution of HPF₆. The organic solution was dried over sodium sulfate, filtered and the solvent removed under vacuum, then the solid product was precipitated from a dichloromethane solution using ether. The complex 38 was obtained as an orange powder (0.470 g, 80% yield). ¹H NMR (CH₃COCH₃, 300 MHz), δ_{ppm} : 8.03 (s, 1H, NH), 5.11 and 4.89 (s, 5H, Cp), 4.18 (m, 2H, NHCH₂), 2.78 (s, 1H, C=CH), 2.45 (s, 18H, C₆Me₆). ¹³C NMR (CH₃COCH₃, 62.90 MHz), δ_{ppm} : 163.6 (C=O), 100.4 (C_q of C₆Me₆), 84.2 (C_q of Cp), 81.2 and 77.2 (CH of Cp), 80.5 (C=CH), 72.7 (C=CH), 48.1 (NHCH₂), 17.0 (CH₃ of C₆Me₆). Anal. Calcd for C₂₁H₂₆ON-FePF₆: C 49.53, H 5.15; found: C 48.38, H 5.02. IR $v_{C=O}$: 1 667 cm⁻

General Procedure for the Synthesis by "Click" Reactions of the Dendrimers G_n -n-[Fe(η^5 -C₅H₄COXCH₂-1,2,3-triazolyldendr)(η^6 -C₆Me₆)] [PF₆], (n = 1, 2, 4, 7; X = O/NH). The complexes 37 or 38 (1.5 equiv per branch) dissolved in 30 mL of degassed dichloromethane was added to a solution of the azido dendrimer in 30 mL of degassed dichloromethane, and 60 mL of degassed water (1:1 dichloromethane/water) was added. A solution of CuSO₄ 1 M (1 equiv per branch) was added at 0 °C, followed by the dropwise addition of a freshly prepared solution of sodium ascorbate 1 M (2 equiv per branch). The reaction mixture was allowed to stir for 24 h under nitrogen atmosphere at room temperature. An aqueous solution of ammonia was then added, and the mixture was allowed to stir 10 min to remove all the copper trapped inside the dendrimer. The organic phase was washed twice with water, dried over sodium sulfate, filtered, and the solvent was removed under vacuum. The product was then washed with methanol to remove the excess alkyne and precipitated from an acetonitrile solution with methanol.

 $G_0-9-[Fe(\eta^5-C_5H_4CO_2CH_2-1,2,3-triazolyl-dendr)(\eta^6-C_6Me_6)]$ [PF₆], 39. The complex 39 was synthesized from 37 (0.242 g, 0.486 mmol) and G_0 -9-long-N₃ 33 (0.1 g, 0.036 mmol) using the general procedure for the synthesis by "click" reactions of the dendrimers G_n -n-[Fe(η^5 -C₅H₄COXCH₂-1,2,3-triazolyl-dendr)(η^6 -C₆Me₆)] $[PF_6]$, (n = 1, 2, 4, 7; X = O/NH). The complex **39** was obtained as an orange powder (0.232 g, yield 89%). ¹H NMR (CH₃-COCH₃, 250 MHz), δ_{ppm} : 8.23 (s, 9H, CH of triazole), 7.10 (s, 3H, CH core), 5.48 (s, 18H, OCH₂-triazole), 5.16 and 5.02 (s, 36H, Cp), 4.45 (t, 18H, triazole-CH2CH2), 2.47 (s, 162H, C6Me6), 1.94 (m, 18H, triazole-CH₂CH₂), 1.72 (m, 36H, CH₂CH₂CH₂Si), 1.30 (m, 162H, $(CH_2)_9$), 1.21 (t, 36H, $CH_2CH_2CH_2Si$), 0.51 (s, 36H, CH₂SiCH₂), -0.03 (s, 54H, Si(CH3)2). ¹³C NMR (CH₃-COCH₃, 62.5 MHz), δ_{ppm} : 166.3 (C=O), 146.6 (Cq of triazole), 142.5 (Cq of arom. core), 132.2 (CH of triazole), 125.9 (CH of arom. core), 100.7 (Cq of C₆Me₆), 90.9 (Cq of Cp), 82.0 and 79.1 (CH of Cp), 69.7 (OCH2-triazole), 59.6 (triazole-CH2CH2), 55.4 (triazole-CH₂CH₂), 50.8 (triazole-CH₂CH₂ CH₂), 44.7 (C_qCH₂-CH₂CH₂Si), 43.0 (benzylic C_q), 34.7 (triazole-CH₂CH₂ CH₂ CH₂), 32.08 (triazole-CH₂CH₂ CH₂ CH₂ CH₂CH₂), 27.3 and 24.8 ((CH₂)₄CH₂CH₂Si), 23.8 (CH₂CH₂Si), 18.9 (C_qCH₂CH₂CH₂CH₂-Si), 18.8 ((CH₂)₄CH₂CH₂Si), 17.1 (CH₃ of C₆Me₆), 16.9 (C_qCH₂- CH_2CH_2Si), 16.2 ((CH_2)₄ CH_2CH_2Si), -2.5 ($Si(CH_3)_2$). Anal. Calcd for $C_{342}H_{534}O_{18}N_{27}Si_9Fe_9P_9F_{54}$: C 55.73, H 7.25; found: C 55.12, H 7.21. IR $\nu_{c=0}$: 1721 cm⁻¹.

 $G_1-27-[Fe(\eta^5-C_5H_4CO_2CH_2-1,2,3-triazolyl-dendr-)(\eta^6-C_6Me_6)]-$ [PF₆], 40. The metallodendrimer 40 was synthesized from the azido dendrimer G1-long-N3 34 (0.1 g, 0.01 mmol) and 37 (0.200 g, 0.402 mmol) using the general procedure for the synthesis by "click" reactions of the dendrimers G_n -*n*-[Fe(η^5 -C₅H₄COXCH₂-1,2,3-triazolyl-dendr)(η^{6} -C₆Me₆)] [PF₆], (n = 1, 2, 4, 7; X = O/NH). The complex 31 was obtained as an orange powder (0.215 g, 92% yield). ¹H NMR (CD₃CN, 200 MHz), δ_{ppm} : 7.99 (s, CH of triazole), 7.21 (d, arom.), 6.85 (d, arom.), 5.45 (s, OCH₂-triazole), 4.97 and 4.79 (s, Cp), 4.41 (t, triazole-CH2CH2), 3.54 (s, SiCH2O), 2.39 (s, C6Me6), 1.91 (t, triazole-CH₂CH₂), 1.66 (s, CH₂CH₂CH₂Si), 1.29 (m, $(CH_2)_9$, 1.15 (t, $CH_2CH_2CH_2Si$), 0.47 (t, CH_2SiCH_2), -0.06 (s, 216H, Si(CH3)2). ¹³C NMR (CD₃CN, 50 MHz), δ_{ppm} : 165.5 (C= O), 146.0 (Cq of triazole), 137.1 (arom. Cq), 131.8 (ĈH of triazole), 99.9 (Cq of C₆Me₆), 90.9 (Cq of Cp), 80.7 and 78.9 (CH of Cp), 69.7 (OCH2-triazole), 58.9 (triazole-CH2CH2), 42.3 (CqCH2CH2-CH₂Si), 36.9 (triazole-CH₂CH₂ CH₂ CH₂), 33.7 (triazole-CH₂CH₂ CH₂ CH₂CH₂), 29.5 ((CH₂)₄CH₂CH₂Si), 26.4 (CH₂CH₂Si), 23.8 (CqCH2CH2CH2Si), 19.4 ((CH2)4CH2CH2Si), 18.00 (CH3 of C₆Me₆), 16.2 (C_qCH₂CH₂CH₂Si), 15.4 ((CH₂)₄CH₂CH₂Si), -3.3 (Si(CH₃)₂). Anal. Calcd for C₁₁₂₅H₁₄₅₈O₆₃N₈₁Si₃₆Fe₂₇P₂₇F₁₆₂: C 57.36, H 6.19, found: C 56.39; H 0.5.96 IR $\nu_{c=0}$: 1721 cm⁻

G₀-9-[Fe(η^5 -C₅H₄CONHCH₂-1,2,3-triazolyl-dendr-)(η^6 -C₆Me₆)]-[**PF**₆], 41. The dendrimer 41 was synthesized from G₀-long-N₃ 33 (0.060 g, 0.0216 mmol) and 38 (0.145 g, 0.292 mmol) using the general procedure for the synthesis by "click" reactions of the dendrimers G_n-n-[Fe(η^5 -C₅H₄COXCH₂-1,2,3-triazolyl-dendr)(η^6 -C₆Me₆)] [PF₆], (*n* = 1, 2, 4, 7; X = O/NH). The complex 41 was obtained as an orange powder (0.136 g, 87% yield). ¹H NMR (CH₃COCH₃, 300 MHz), δ_{ppm} : 8.21 (s, 9H, NH), 7.95 (s, 9H, CH of triazole), 7.09 (s, 3H, CH core), 5.16 and 4.90 (s, 45H, Cp), 4.62 (s, 18H, NHCH₂-triazole), 4.40 (t, 18H, triazole-CH₂CH₂), 2.43 (s, 162H, C₆Me₆), 1.87 (t, 18H, triazole-CH₂CH₂), 1.58 (s, 36H, CH₂CH₂CH₂Si), 1.32 (m, 180H, (CH₂)₉ and CH₂CH₂CH₂Si), 0.51 (s, 36H, CH₂SiCH₂), -0.36 (s, 54H, Si(CH₃)₂). ¹³C NMR (CH₃COCH₃, 75.0 MHz), δ_{ppm} : 162.8 (C=O), 145.7 (C_q of arom. core), 143.2 (C_q of triazole), 123.0 (CH of triazole), 121.3 (CH of arom. core), 99.4 (C_q of C₆Me₆), 83.7 and 78.3 (C_q of Cp), 80.2 and 76.3 (CH of Cp), 71.7 (triazole-CH₂CH₂), 49.8 (NHCH₂-triazole), 43.7 (C_qCH₂CH₂CH₂Si), 42.0 (benzylic C_q), 34.9 (triazole-CH₂CH₂), 29.2 ((CH₂)₇), 23.8 (CH₂CH₂Si), 17.9 (C_qCH₂-CH₂CH₂Si), 16.0 (CH₃ of C₆Me₆), 14.9 (C_qCH₂CH₂CH₂Si), -3.6 (Si(CH₃)₂). ²⁹Si NMR (CH₃COCH₃, 59.62 MHz), δ_{ppm} : 2.13 (*Si*Me₂). MS (MALDI-TOF; *m/z*), calcd. for C₃₄₂H₅₄₃Si₉O₉N₃₆.Fe₉P₈F₄₈ (M⁺): 7 218.38, found: 7 215.06. Anal. Calcd for C₃₄₂H₅₄₃-Si₉O₉N₃₆Fe₉P₉F₅₄: C 55.79, H 7.43; found: C 54.93, H 7.34.

G₁-27-[Fe(η^{5} -C₅H₄CONHCH₂-1,2,3-triazolyl-dendr-)(η^{6} -C₆- Me_6][PF₆], 42. The dendrimer 42 was synthesized from G_1 -long-N₃ 34 (0.050 g, 0.00496 mmol) and 38 (0.099 g, 0.198 mmol) using the general procedure for the synthesis by "click" reactions of the dendrimers G_n -*n*-[Fe(η^5 -C₅H₄COXCH₂-1,2,3-triazolyl-dendr)- $(\eta^{6}-C_{6}Me_{6})$][PF₆], (n = 1, 2, 4, 7; X = O/NH), giving 42 as an orange powder (0.089 g, 76% yield). ¹H NMR (CH₃COCH₃, 300 MHz), δ_{ppm}: 8.21 (s, 27H, NH), 7.99 (s, 27H, CH of triazole), 7.24 (d, 54H, arom), 6.89 (d, 54H, arom), 5.21 and 4.95 (s, 45H, Cp), 4.66 (s, 54H, NHCH₂-triazole), 4.24 (t, 54H, triazole-CH₂CH₂), 3.58 (s, 18H, CH₂O), 2.48 (s, 486H, C₆Me₆), 1.92 (t, 54H, triazole-CH₂CH₂), 1.70 (s, 72H, CH₂CH₂CH₂Si), 1.31 (m, 144H, (CH₂)₉), 0.52 (s, 126H, CH₂SiCH₂), -0.050 (s, 54H, Si(CH₃)₂). ¹³C NMR $(CH_3COCH_3, 75.0 \text{ MHz}), \delta_{ppm}: 162.7 (C=O), 158.9 (arom. OC_q),$ 144.0 (Cq of triazole), 139.1 (arom. Cq), 126.9 and 113.5 (arom. CH of dendron), 122.9 (CH of triazole), 99.6 (Cq of C₆Me₆), 83.7 and 78.3 (C_q of Cp), 80.2 and 76.3 (CH of Cp), 71.7 (triazole-CH₂CH₂), 59.8 (SiCH₂O), 49.6 (NHCH₂-triazole), 42.6 (C_q- $CH_2CH_2CH_2Si$), 41.2 (benzylic C_q), 34.7 (triazole- CH_2CH_2), 29.2 ((CH₂)₇), 23.8 (CH₂CH₂Si), 17.9 (C_qCH₂CH₂CH₂CH₂Si), 16.0 $(CH_3 \text{ of } C_6Me_6), 14.9 (C_qCH_2CH_2CH_2Si), -3.7 (Si(CH_3)_2).$ ²⁹Si NMR (CH₃COCH₃, 59.62 MHz), δ_{ppm} : 2.13 (*Si*(Me)₂). Anal. Calcd for C₁₁₂₅H₁₄₈₅Si₃₆O₃₆N₁₀₈Fe₂₇P₂₇F₁₆₂: C 57.42, H 6.36; found: C 57.04, H 6.23.

 G_4 -729-[Fe(η^5 -C₅H₄CONHCH₂-1,2,3-triazolyl-dendr-)(η^6 -C₆-Me₆)[[PF₆], 43. The dendrimer 43 was synthesized from G₄-long- N_3 , 35, (0.045 g, 1.52. 10^{-4} mmol) and 38 (0.083 g, 0.166 mmol) with the general procedure for the synthesis by "click" reactions of the dendrimers G_n -*n*-[Fe(η^5 -C₅H₄COXCH₂-1,2,3-triazolyl-dendr)(η^6 -C₆Me₆)] [PF₆], (n = 1, 2, 4, 7; X = O/NH), giving 43 as an orange powder (0.061 g, 61% yield). ¹H NMR (CH₃COCH₃, 300 MHz), δ_{ppm}: 8.25 (s, NH), 7.98 (s, CH of triazole), 7.21 (d, arom), 6.88 (d, arom), 5.20 and 4.93 (s, Cp), 4.64 (s, NHCH₂triazole), 4.42 (t, triazole-CH2CH2), 3.56 (s, CH2O), 2.46 (s, zC₆Me₆), 1.91 (t, triazole-CH₂CH₂), 1.68 (s, CH₂CH₂CH₂Si), 1.29 (m, $(CH_2)_9$), 0.48 (s, CH_2SiCH_2), -0.067 (s, $Si(CH_3)_2$). ¹³C NMR (CH₃COCH₃, 75.0 MHz), δ_{ppm}: 162.7 (C=O), 158.8 (arom. OC_q), 144.1 (C_q of triazole), 139.1 (arom. C_q), 126.7 and 113.5 (arom. CH of dendron), 122.9 (CH of triazole), 99.4 (C_q of C₆Me₆), 83.7 and 78.3 (C_q of Cp), 80.2 and 76.3 (CH of Cp), 71.7 (triazole-CH2CH2), 59.8 (SiCH2O), 49.6 (NHCH2-triazole), 42.6 $(C_qCH_2CH_2CH_2Si)$, 41.2 (benzylic C_q), 34.8 (triazole-CH₂CH₂), 29.1 ((CH₂)₇), 23.8 (CH₂CH₂Si), 17.9 (C_qCH₂CH₂CH₂Si), 16.0 $(CH_3 \text{ of } C_6Me_6), 14.9 (C_qCH_2CH_2CH_2Si), -3.7 (Si(CH_3)_2).$ ²⁹Si NMR (CH₃COCH₃, 59.62 MHz), δ_{ppm} : 2.13 (Si(Me)₂). Anal. Calcd for C₃₁₆₆₂H₅₀₂₂₃O₁₀₈₉Si₁₀₈₉N₂₉₁₆Fe₇₂₉P₇₂₉F₄₃₇₄: C 57.09, H 12.47; found: C 55.01, H 12.23.

G₇-19683-[Fe(η^5 -C₅H₄CONHCH₂-1,2,3-triazolyl-dendr-)(η^6 -C₆Me₆)][PF₆], 44. The dendrimer 44 was synthesized from G₇-long-N₃, 36, (0.040 g, 5 × 10⁻⁶ mmol) and 38 (0.073 g, 0.148 mmol) with the general procedure for the synthesis by "click" reactions of the dendrimers G_n-n-[Fe(η^5 -C₅H₄COXCH₂-1,2,3-triazolyl-dendr)(η^6 -C₆Me₆)][PF₆], (n = 1, 2, 4, 7; X = O/NH),

Article

giving 44 as an orange powder (0.046 g, 52% yield). ¹H NMR (CH₃COCH₃, 300 MHz), δ_{ppm} : 8.17 (s, NH), 7.95 (s, CH of triazole), 7.21 (d, arom), 6.88 (d, arom), 5.20 and 4.93 (s, Cp), 4.64 (s, NHCH₂-triazole), 4.41 (t, triazole-CH₂CH₂), 3.56 (s, CH2O), 2.46 (s, C6Me6), 1.91 (t, triazole-CH2CH2), 1.71 (s, CH₂CH₂CH₂Si), 1.29 (m, (CH₂)₉), 0.51 (s, CH₂SiCH₂), -0.064 (s, Si(CH_3)₂). ¹³C NMR (CH₃COCH₃, 75.0 MHz), δ_{ppm} : 162.7 (C=O), 158.7 (arom. OC_q), 144.2 (C_q of triazole), 139.1 (arom. C_q), 126.7 and 113.5 (arom. CH of dendron), 122.7 (CH of triazole), 99.3 (C_q of C_6Me_6), 83.7 and 78.3 (C_q of Cp), 80.2 and 76.3 (*C*H of Cp), 71.7 (triazole-CH₂CH₂), 59.8 (SiCH₂O), 49.6 (NHCH₂-triazole), 42.5 (C_q CH₂CH₂CH₂CH₂Si), 41.2 (benzylic C_q), 34.8 (triazole-CH₂CH₂), 29.1 ((CH₂)₇), 23.8 (CH₂CH₂Si), 17.9 (C_aCH₂CH₂CH₂Si), 16.2 (CH₃ of C₆Me₆), 14.9 (C_aCH₂- $CH_2CH_2Si)$, -3.7 (Si(CH_3)₂). ²⁹Si NMR (CH_3COCH_3 , 59.62 MHz), δ_{ppm} : 2.13 (Si(Me)₂). Anal. Calcd for C₈₅₆₁₆₁H₁₃₅₈₀₄₉-O₂₉₅₂₀Si₂₉₅₂₀N₇₈₇₃₂Fe₁₉₆₈₃P₁₉₆₈₃F₁₁₈₀₉₈: C 57.10, H 7.60; found: C 53.61, H 7.32.

[Fe(η^{5} -C₅H₄CO₂⁻Na⁺)(η^{6} -C₆Me₆)][PF₆], 2a. The complex 2 (0.150 g, 0.3178) was added at ambient temperature to a solution of NaOH (0.013 g, 0.3178 mmol) in 5 mL of EtOH. After stirring for 5 min, the solvent was removed under vacuum, giving 2a as an orange powder (0.160 g; 98% yield). ¹H NMR (CD₃CN, 200 MHz), δ_{ppm} : 4.73 and 4.45 (s, 4H, Cp), 2.37 (s, 18H, C₆Me₆). ¹³C NMR (CD₃CN, 50 MHz) δ_{ppm} : 168.6 (C=O), 98.5 (C₆Me₆), 89.3 (Cq of Cp), 79.1 and 78.4 (CH of Cp), 16.0 (CH₃ of C₆Me₆).

Reaction between C₆₀ and 22a with Formation of G₄-DAB-64-[Fe^{II}(η^5 -C₅H₄CONH-dendr)(η^6 -C₆Me₆)][C₆₀•⁻], 45. 1 (0.040 g, 0.099 mmol), in 10 mL of THF was stirred with 4.6 g of Na/Hg amalgam (1%, 2 mmol) for 1 h under N₂. Then, THF was removed under vacuum, the residue of 1 was extracted with 15 mL of pentane, and this forest-green solution of 1 was used for the following reaction. This solution was slowly added to a CH₃CN solution (15 mL) of 22 (0.050 g, 0.0014 mmol) upon stirring at -40 °C until the solution turned from forest-green to blue-green (equivalence point of the titration), indicating the formation of 22a. The solution of 22a at -40 °C was slowly added to a 30-mL toluene solution of C_{60} (0.063 g, 0.088 mmol) at -40 °C, which immediately provoked the formation of a precipitate, until the blue-green color persisted in solution (equivalence point of the titration). The solvent was removed under vacuum, and the residue was washed twice with CH₃CN (the yellow extracts contained 1 as verified by ¹H NMR), and with toluene (colorless extract). The black powder of 45 was dried under vacuum and was kept under N2 (0.091 g, 0.00127 mmol, 91% yield). The organic solvent resulting from the washing was removed under vacuum and 0.032 g (0.079 mmol, 80%) of 1 was recovered. EPR spectrum of 45 at 298 K (see Figure 3): g =2.00093; ΔH = 3.12 G. Mössbauer spectrum of 45 at 77 K: a simple quadrupole doublet (QS = 1.97 mm/s; IS = 0.56 mm/s vs Fe), characteristic of the salts of $1.^{4a,12a}$

Acknowledgment. We are grateful to Prof. François Varret (University of Versailles) for the Mössbauer spectrum of 45. The Ministère de l'Enseignement Supérieur et de la Recherche Scientifique de Côte d'Ivoire (Ph.D. grant to R.D.), the Fundação para a Ciência e a Tecnologia (FCT), Portugal (Ph. D. grant to C.O.), the Université Bordeaux 1, the CNRS, the IUF (D.A.) and the ANR (ANR-06-NANO-026) are gratefully acknowledged for financial support.

Supporting Information Available: General data and ¹H and ¹³C NMR and IR spectra of new products (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.